

MONTHLY WEATHER REPORT

/OLUME 12

NUMBER 1

JANUARY, 1969

LIBRARY

NO.A.A.

U.S Dept of Commerce

991 •E3 M6 V. 12 1969)

U.D.C. 551. 506,1 (62)

MINISTRY OF SCIENTIFIC RESEARCH — METEOROLOGICAL DEPARTMENT
CAIRO

National Oceanic and Atmospheric Administration Environmental Data Rescue Program

ERRATA NOTICE

One or more conditions of the original document may affect the quality of the image, such as:

Discolored pages
Faded or light ink
Binding intrudes into the text

This document has been imaged through the NOAA Environmental Data Rescue Program. To view the original document, please contact the NOAA Central Library in Silver Spring, MD at (301) 713-2607 x124 or www.reference@nodc.noaa.gov.

Information Manufacturing Corporation
Imaging Subcontractor
Rocket Center, West Virginia
September 14, 1999

MONTHLY WEATHER REPORT

OLUME 12

NUMBER 1

JANUARY, 1969

ATMOSPHERIC SCIENCES
LIBRARY

1973

U. S. Dept. of Commerce

J.D.C. 551. 506,1 (62)

MINISTRY OF SCIENTIFIC RESEARCH — METEOROLOGICAL DEPARTMENT
CAIRO

PUBLICATIONS OF THE METEOROLOGICAL DEPARTMENT OF THE UNITED ARAB REPUBLIC—CAIRO

In fulfilment of its duties as the National Meteorological service for the U.A.R., the Meteorological Department issues several reports and publications on weather, climate and agrometeorology. The principal publications are described on this page.

Orders for publications should be adressed to:

"The Director General, Meteorological Department, Kubri-el-Qubbeh-CAIRO".

THE DAILY WEATHER REPORT

This report is printed daily in the Meteorological Department. It contains surface and upper air observations carried by the relevant networks of the Republic and made at the four main synoptic hours of observations (00, 06, 12 and 18 U.T.); as well as ship observations over the Eastern Mediterranean and north Red Sea made at the same times.

It also contains two surface synoptic charts at 00 and 12 U.T. and two upper air charts for the standard isobaric surfaces 700 & 500 mbs. at both 00 and 12 U.T. In compliance with resolution 8 (EC-XIII) of WMO, foreign upper air data included in Cairo Subregional Broadcast are also given in this report.

As from January 1968, the daily weather report contents are pressed into a rather less but representative selection of synoptic weather observations and charts.

THE MONTHLY WEATHER REPORT

First issued in 1909, the Monthly Weather Report served to give a brief summary of the weather conditions that prevailed over Egypt during the month, with a table showing the mean values for few meteorological elements and their deviations from the normal values. From 1954 to 1957 this report was in a rapid state of development and extension resulting into a voluminous report on January 1958 giving surface, upper air, and agro-meteorological data for U.A.R.

THE AGRO-METEOROLOGICAL ABRIDGED MONTHLY REPORT

Gives a review of weather experienced in the agro-meteorological stations of the U.A.R. as well as monthly values of certain elements.

THE ANNUAL REPORT

This report gives annual values and statistics for the various meteorological elements, together with a summary of the weather conditions that prevailed during all months of the year.

CLIMATOLOGICAL NORMALS FOR EGYPT

The normals, long averages and statistical data are given in one edition for stations in Egypt from the date of opening of each station up to 1945. A new voluminous edition was issued in March 1968 which brings normals and mean values up till 1960.

CONTENTS

		PAGE
Forewor	rd	1, 2
Introduc	ction and Explanation of the Tables	3-12
List of	Stations Appearing in the Report	13
General	Summary of Weather Conditions	14-15
	SURFACE DATA	
•	y values of the Atmospheric Pressure, Air Temperature, Relative Humidity, Sunshine Duration and Piche Evaporation	16
" A2.—Maxim	um and Minimum Air Temperatures	17
" A3.—Sky C	Cover and Rainfall	18
" A4.—Numbe	er of Days of Occurrence of Miscellaneous Weather Phenomena	19
	er in Hours of Occurrences of Concurrent Surface Wind Speed and on Recorded Within Specified Ranges	
	UPPER AIR DATA	
	hly Means and Monthly Absolute Higher & Lower Values of Altitude, air rature & Dew point at Standard and Selected Pressure Surface	
	and Extreme values of The Freezing Level and The Tropopause; The Wind Speed in The Upper Air	
	er of Occurrences of Wind Direction Within Specified Ranges and The Scalar Wind Speed at the Standard and Selected Pressure Surfaces	
	AGRO-METEOROLOGICAL DATA	
Review	vs of Agro-meteorological stations	28, 29
Table C1.—Air Te	emperature at 2 Metres Above Ground	30
	nte Values of Air Temperature at 2 Metres Above Ground, Absolute um Air Temperature at 5 Cms Above Ground Over Different Fields	
	+ Sky) Radiation, Duration of Bright Sunshine, Relative Humidity and r Pressure at 2 Metres Above Ground, Evaporation and Rainfall	
., C4.—Extrem	ne Soil Temperature at Different Depths in Different Fields	31
" C5.—Surface	e wind	31

FOREWORD

Since 1909 the Meteorological Department of Egypt has been issuing regularly the Monthly Weather Report, giving a brief summary of the weather conditions prevailing over Egypt during the month. These reports used to include a table giving limited climatological data for some selected surface observations.

On January 1954, the Monthly Weather Report has been revised and the general summary of the weather conditions has been extended to give a more detailed description of the synoptic situations and the associated weather prevailing during the month.

On February 1955 a further extension took place, the general summary of the weather conditions has been classified into different items to give more comprehensive information. More detailed surface climatological tables for selected stations and table for miscellaneous weather phenomena have been added to the Report.

On January 1956, the climatological tables included in the Report have been extended to include upper air climatological data to meet the increasing demand for this information.

In addition the full text of the monthly report of the standard observations taken at the Central Agro-Meteorological Station at Giza has been included in this Report instead of issuing it as a separate bulletin.

On January 1957, the Report has been completely revised, a new set of meteorological tables has been introduced to give, as far as possible, complete information for surface and upper air data from a more representative network of stations.

In addition, a general review of the observations taken in the fields of the plant breeding farm at Giza is included in the Report. The review gives a brief summary of the characteristic features of the different meteorological and micrometeorological elements of the month, more weight is given in this review to those elements which are of interest to agriculturists.

Starting from the Report of January 1958, the Monthly Weather Report for the U.A.R. included a detailed description of the synoptic situations and the associated weather experienced all over the Republic during the month. The Report included a new set of tables giving more detailed surface and upper air climatological data for selected stations in the Republic. The review of the Agrometeorological station at Giza and the normal observations made at the field of the station were also included in the Report.

As from January 1960, these tables have been totally revised and some new tables have been introduced to include more detailed climatological data. In order to explain how the tables included in these Monthly Weather Reports have been compiled, detailed notes are included in the Report of January 1960 giving informations about the instruments used and their exposure, the methods of observations and the methods of computing the means and frequencies.

As from January 1964, the Monthly Weather Report was again totally revised. The number of meteorological stations appearing in the Report have been concentrated in the main synoptic stations working mostly continuously 24 hours. In addition

will be confined to the monthly mean values, monthly totals, monthly frequencies and monthly absolute values. More specific climatological data have to be requested from the Meteorological Department.

climatological data included in the Report

Starting from the Report of January 1958, the monthly Weather Report of the U.A.R. carries serial reference in volume and number; each year carries a serial number in volume, Number I, being for January and 12 for December. The reference number of January 1958 is volume I, number I.

M. F. TAHA

Under Secretary of State
Director General
Meteorological Department

Cairo, 15-12-1970

INTRODUCTION AND EXPLANATION OF THE TABLES

For the purpose of this Monthly Weather Report, the United Arab Republic is divided into six climatic districts as follows:

Number	District	Number	District
I	Mediterranean Area	IV	Upper Egypt
II	Lower Egypt	v	Western Desert
III	Cairo Area	VΙ	Red Sea Area

The data included in Tables A1, A2, A3, A4 & A5, are based on surface observations made at a representative selection of the basic network of synoptic stations. The data included in Tables B1, B2 & B3 refer to Upper Air observations. The data included in Tables C1,C2, C3,C4 & C5, are based on observations taken at the Agro-Meteorological stations at El Kasr, Tahrir, Bahtim and Kharga. The observation fields at these stations are considered for the moment as dry and bare fields. At Kharga Oasis, the observation field is of the size of about 4000 - 6000 square metres.

The soil characteristics of these fields are:

	EL KASR	TAHRIR	ВАНТІМ	KHARGA
Top soil type	not available at present	Pure sand	not available at present	Sandy loam granular non-compact
Top soil depth	,,,	More than 3 metres.	,,	20 cms.
Sub soil type	,,	Pure sand	,,	Platy clay non-compact
Slope of ground and its direction	>>	½ %towards East& North	,,	Flat (0-0.3%)
Level of water table) ;	More than 5 metres	,,	More than 5 metres

Except for the wind speed which is expressed in knots, the metric units are used throughout this report and are as follows:

- The atmospheric pressure is expressed in millibars (one millibar = 1000 dynes per square centimetre = the pressure due to 0.7501 millimetre of mercury at 0°C at latitude 45°),
- Air and soil temperatures in degrees celsius (°C),
- Relative humidity (%),
- Rainfall in millimetres.
- Snow depth in centimetres,
- Duration of bright sunshine in hours,
- Sky cover in octas,
- Evaporation in millimetres,
- Altitude of pressure surface in geopotential metres,
- Mean wind speed of the whole day, and of the day time and the night time intervals in metres per second.
- (Solar + Sky) radiation in gram-calories per centimetre square,
- Vapour pressure in millimetres.

TABLE A1.— Monthly values of the Atmospheric Pressure, Air Temperature, Relative Humidity, Bright Sunshine Duration & Piche Evaporation

Atmospheric Pressure.

The monthly mean values of the daily atmospheric pressure corrected to Mean Sea Level (M.S.L.) are the arithmetic means over the month of their corresponding daily hourly values or of the daily observations taken at the 8 synoptic hours (00,03, 06, 09, 12, 15, 18 & 21 UT). The atmospheric pressure is measured by mercury barometers installed indoors; The Mean Sea Level Pressure (M.S.L.) is the barometer reading corrected for the height of the barometer cistern above or (below) the Mean Sea Level at the station. Corrections for index, temperature and latitude have been applied to the barometer readings before reduction to M.S.L. Deviations from normals appear besides monthly mean values in a separate column.

Air Temperature.

The monthly mean values of the maximum (A) and of the minimum (B) air temperatures are computed from their corresponding daily routine values observed over the month. The maximum (mercury) and the minimum (alcohol) thermometers are freely exposed in the louvred screens with their bulbs at a height of 160 to 170 centimetres above the ground. Deviations from normals appear besides monthly mean values.

The monthly mean values of (A + B)/2 are computed from their corresponding daily calculated values over the month.

The monthly mean values of the dry and of the wet bulb air temperatures are the arithmetic means over the month of their corresponding daily hourly values or of their corresponding values at the 8 synoptic hours (00,03, 06, 09, 12, 15, 18 & 21 UT). The dry and wet bulb thermometers used are of the mercury type and are freely exposed in sloping double roofed louvred screens with their bulbs at a height of 140-150 centimetres above the ground. Deviations from normals appear besides monthly mean values in a separate column.

Relative Humidity

The mean daily R. Humidity during the month is derived from the mean daily values of the dry and wet bulb temperatures using Jelinek's Psychrometer Tables (Liebzig 1911). The mean daily values of the dry and wet bulb air temperatures are as indicated in the last paragraph. No corrections for wind speeds or atmospheric pressure are applied. Deviations from normals appear besides monthly mean values in a separate column.

Bright Sunshine Duration

The actual duration of bright sunshine for the month is the sum of the actual daily bright sunshine durations. The total possible duration for the month is the sum of the daily calculated periods between sunrise and sunset. In calculating the possible duration of sunshine for a given day, the periods of cut-off for that day caused by obstacles, such as mountains are eliminated from the possible duration with an ideal flat horizon. In case of stations where the record of day or more is or are missing, the total actual duration is given between brackets and a note is added at the end of the table giving the actual number of records (days) used in summing up this total actual. In such cases the corresponding total possible duration is also given in brackets and it is the sum of the possible duration of the days of the available records. The percentage of the actual to the possible duration appears besides the total possible values in a separate column. The duration of bright sunshine is measured by the Campbell-Stokes sunshine recorders which are suitably exposed.

Evaporation (Piche)

The monthly mean value of Piche evaporation is computed from its daily routine values observed at 0600 UT over the month. Evaporation measurements are taken once daily at 0600 UT and give the evaporation for the previous 24 hours. The evaporation readings are measured by a Piche tube freely exposed in sloping double roofed louvred screens, the evaporation disc has an effective area of 10.1 centimetres square, white in colour, and at a height of 140-150 centimetres above the ground.

TABLE A2.—Maximum & Minimum Air Temperatures

Higher and lower limits of both maximum and minimum temperatures and their corresponding dates of occurrences during the month are extracted from the daily readings of maximum (mercury) and minimum (alcohol) thermometers respectively. These dates are included for acutal occurrences up to three; when exceeding three, the symbol * is added beside the last three dates.

The number of days during the month with maximum air temperature above 25°C, 30°C, 35°C, 40°C & 45°C and with minimum air temperature below 10°C, 5°C, 0°C & --5°C are included also in this table under separate columns.

The types and exposure of the maximum and of the minimum thermometers are as indicated in the notes on table A1.

The monthly mean values of grass minimum temperatures are the arithmetic means over the month of their corresponding daily values. The grass minimum temperatures are measured by ordinary minimum (alcohol) thermometers suitably exposed in the open air at the station field on special stands with their bulbs at a height of 5 centimetres above ground just touching the grass tops if there is any. Grass minimum theromometers readings are taken daily as a routine base at 0600 U.T. Deviations from normals appear besides mean values in a separate column.

TABLE A3.—Sky Cover & Rainfall

The monthly mean values of the total sky cover at the principal hours (00,06,12 & 18 UT) are computed from their corresponding daily routine values observed during the month. Mean values of the daily total sky cover are the arithmetic means over the m onth of the daily hourly values or of the daily observations taken at the 8 synoptic hours (00, 03, 06, 09, 12, 15, 18 & 21 U.T). Sky cover is in octas.

The monthly total rainfall is the total rainfall during the month. The maximum daily rainfall and the number of days with rain < 0.1 and more than or equal 0.1, 1, 5, 10,25 & 50 mms are extracted from the routine daily rainfall totals during the month. The rainfall for a given day is the amount of rain which has fallen during the 24 hours commencing at 0600U.T of that day; when the amount of rain which has fallen is not large enough to be measured (less than 0.1 mm) the term "Trace" is entered as (Tr.). The amount of rainfall measured includes the water equivalent of the rain water which has frozen after falling and the water equivalent of solid precipitation if any such as hail. Dates of maximum rain in 24 hours are included for actual occurrences up to three; when exceeding three, the symbol* is added besides the last three dates.

The amount of rainfall is normally measured by ordinary rain gauges. Some selected stations are also equipped with a recording type of rain gauge. The rim of both types of gauges are at a height of 90-100 centimetres above the ground.

TABLE A4.— Number of Days of Occurrence of Miscellaneous Weather Phenomena

This table gives the number of days of occurrence of rain, snow, ice pellets, hail, frost, thunders torm, mist, fog, haze, thick haze, dust or sandrising, dust or sandstorm, gale, clear sky & cloudy sky. Except for rain (see notes on table A3) the days of occurrence of these weather phenomena are those days during which the phenomenon has occurred at any time between 2200, and 2200 U.T.

In compiling this table, the terminology and definitions of these different weather phenomena are as follows.

- A day of rain is the day during which the total amount of rainfall is 0.1 millimetre or more.
- A day of snow is the day druing which snow or snow flakes or snow showers is or are observed even if it is or (they are) so small in quantity as to yield no measurable amounts of precipitation in the rain-gauge.
- A day of ice pellets is the day during which ice pellets are observed even if they are so small in quantity as to yield no measurable amounts of precipitation in the rain-gauge.
- A day of hail is the day during which either one or more of the following types of precipitation is or are observed, even if they are so small in quantity as to yield no measurable precipitation in the rain-gauge:
 - Soft hailSmall hail
 - Hail stone

 - A day of frost is the day during which frost is observed at the station.
- A day of thunderstorm is the day during which thunder is heard at the station whether lightning is seen or not. A day on which lightning is seen but thunder is not heard at the station is not ounted as a day of thunderstorm.

- A day of mist is the day during which the surface horizontal visibility at the station has deteriorated and became equal to or greater than 1000 metres due to mist.
- A day of fog is the day during which the surface horizontal visibility at the station has deteriorated and fell below 1000 metres due to fog.
- A day of haze is the day during which the horizontal visibility at the station has deteriorated and became equal to or greater than 1000 metres due to haze.
- A day of thick haze is the day during which the horizontal visibility at the station has deteriorated and fell below 1000 metres due to thick haze.
- A day of dust or sandrising is the day during which the horizontal visibility at the station has deteriorated and became equal to or greater than 1000 metres due to dust or sandrising.
- A day of dust or sandstorm is the day during which the horizontal visibility at the station has deteriorated and fell below 1000 metres due to dust or sandstorms.
- A day of gale is the day during which the mean surface wind speed reached or exceeded 34 knots at the station for at least 10 minutes.
 - A day of clear sky is the day on which the mean cloud amount at the station is less than 2/8.
 - A day of cloudy sky is the day on which the mean cloud amount at the station is 6/8 or more

As regards the last two items above, the mean cloud amount for a day is the mean of the 24 hours, the 8 synoptic hours or the 4 main synoptic hours of cloud observations according to the number of the routine observations taken at the station.

TABLE A5.— Number in Hours of Occurrences of Concurrent Surface Wind Speed and Direction Recorded Within Specified Ranges.

The elements used in preparing this table are the mean hourly values of the surface wind speed and the corresponding mean hourly values of direction taken from the daily records of the surface wind instruments intsalled at the station. These mean hourly values are extracted for every hour of each day of the month and they refer to a period of 60 minutes centred at the hour.

The number in hours of occurrences of the surface wind falling within the ranges of speed and direction indicated in the table is the number of cases when the mean hourly values of the surface wind as defined have satisfied these ranges.

The number in hours of "variable" winds is the number of cases where the surface wind showed no definite direction over the period of the 60 minutes centred at the hour or when the wind vane was sticking over that period due to the lightness of the wind and not responding to the variation in wind direction; in such cases the mean wind speed over this period is normally less than 5 knots. The number in hours of "calm" winds is the number of cases where the surface wind has a mean speed of less than one knot over that period, whatever the mean wind direction over the same period is. The number in hours during which the recording instrument failed to record over the whole month is given under a separate column.

The instruments used for recording the surface wind are of the Dines Pressure Tube Anemograph.

This table follows the general lines of Model B of chapter 12 part IV of the WMO Technical Regulations 1959. The ranges of wind speed are (1-10), (11-27), (28-47) knots and 48 knots or more; the ranges for wind direction are twelve ranges of 30° each, beginning with the range (345°-014°) as being the true north.

This table gives the following data:

- The total number in hours of simultaneous occurrences of surface wind satisfying the specified ranges of speed and direction during the month,
- The total number in hours of occurrences of surface wind satisfying the specified ranges of speed during the month irrespective of their direction,
- The total number in hours of occurrences of surface wind blowing from the specified ranges of direction during the month irrespective of their speed.

TABLE B1.—Upper Air Climatological Data

The routine upper air observations are taken at 0000 and 1200 U T, a separate table of this type is prepared for each hour. The number of cases the height of each of the pressure surfaces indicated in the table has been attained during the month, and the number of cases the temperatures and the dew points have been observed at each of these surfaces are given in the table against each element under column (N).

The monthly mean values of the altitude, temperature and dew piont at each of these pressure surfaces are the arithmetical means of the corresponding daily values over the number of cases (N) indicated against each element.

The instruments used are of the radiosonde modulating frequency recording type; the types of transmitters used do not need to apply any corrections for radiation.

This table follows the general lines recommended by the commission for climatology of the World Meteorological Organization Rec. 34 (CCL-1); it gives the following data for the hour of observation indicated at the top of the table:

- The number of cases the height of each of the pressure surfaces has been attained during the month and the number of cases the temperature and dew point at these surfaces have been observed,
- The monthly mean values of the atmospheric pressure corrected to the ground level of the station (H); the highest and lowest values of this pressure observed during the month,
- The monthly mean values of the air temperature and of the dew point at the surface; the highest and lowest values of the surface air temperature observed during the month,
- The monthly mean, the highest and the lowest values of the altitude for each of the pressure surfaces,
- The monthly mean, the highest and the lowest values of air temperature; and the mean dew point at each of the pressue surfaces.

TABLE B2.— Mean and Extreme Values of the Freezing Level and the Tropopause; The Highest Wind Speed in the Upper Air.

The routine upper air observations are taken at 0000 and 1200 UT; a separate table of this type is prepared for each hour as indicated in the notes on table B1. The number of cases the altitude of the freezing level and of the first tropopause have been attained during the month and the number of cases the pressures and the dew points or temperatures have been observed at these levels are given in the table against each element in the (N) box.

The monthly mean values of the altitudes of the freezing level and of the first tropopause and the monthly mean values of the pressures and of the dew points or temperatures at each of these levels are the arithmetical means of the corresponding daily values over the number of cases (N) indicated in the box of each element.

The first tropopause is determined in accordance with the definition adopted by the Executive Committee of the World Meteorological Organization Resolution 21 (Ec - IX).

This table is based on wind observations taken by the SCR -658 or the Metox radiotheodolites working simultaneously with the radiosonde observations. The types of radiosonde instruments used are given in the notes on table BI.

This table gives the following data for each hour of observation indicated at the top of the table:

- The number of cases the freezing level has been attained during the month and the number of cases the pressure and dew point have been observed at this level.
- -- The number of cases the altitude of the first tropopause has been attained during the month and the number of cases the pressure and the temperature have been observed at this level.
 - The monthly mean values of the altitude, pressure and dew point of the freezing level.
- The altitudes, pressures and dew points of the highest and lowest freezing level observed during the month,
 - The monthly mean values of the altitudes, pressures and temperatures of the first tropopause,
- The altitudes pressures and temperatures of the highest and lowest first tropopause observed during the month.
- The direction and speed of the highest wind speed observed during the month, the altitude at which this wind has been observed.

TABLE B3.—Number of Occurrences of Wind Direction Within Specified Ranges and the Mean Scalar Wind Speed at the Standard and Selected Pressure Surfaces

The routine upper air observations are taken at 0000 and 1200 U.T. A separate table of this type is used for each station.

The mean scalar wind speed "ffm" of winds blowing from each range of directions at a given pressure surface, is the arithmetical mean of the corresponding daily values of wind speed for the number of cases "N" during the month.

The term "Calm" is used in this table to denote wind speed of less than one knot.

This table is based on the wind observations taken at the station as indicated in the notes on table B2.

This table, as in the case of table B 1, follows the general lines recommended by the commission for Climatology of the World Meteorological Organization REC. 34 (CCL-1); the ranges of wind direction used are twelve ranges of 30°each be ginning with the range (345°—014°) as being the true north. It gives the following data for the hour of observation indicated:

- —The number of cases (N) the wind has been observed from the specified ranges of direction at the surface of the station and at the different pressure surfaces during the month.
- —The total number of cases (TN) the wind has been observed at the surface of the station and at the different pressure surfaces during the month irrespective of the wind direction,
- —The mean scalar wind speeds (ffm) blowing from the specified ranges of direction at the surface of the station and at the different pressure surfaces,
- —The number of cases of "calm" winds at the surface of the station and at the different pressure surfaces.
- —The mean scalar wind speeds at the surface of the station and at the different pressure surfaces blowing from all directions

AGRO-METEOROLOGICAL DATA

Reviews of Agrometeorological Stations at El-Kasr, Tahrir, Bahtim & Kharga.

The monthly review of all agrometorological elements that have been observed at each agro-meteorological station includes a general summary of pronounced weather phenomena that prevailed during the month together with a comparison between the monthly values of this year and last year of specified elements that are of great interest to agriculturists as well as to agrometeorologists. For some elements, when observations are of a long time, departure from normal values appears also in the monthly review.

During winter, the monthly review includes normally the days of minimum air temperature below 0°C at the height of five centimeters above the ground.

TABLE C1 —Air Temperature at 1½ Metres Above Ground

The monthly mean values of the maximum, minimum, night-time mean, day-time mean and mean of day of air temperatures are the arithmetic means over the month of their corresponding daily values. The mean air temperature of a day is the mean of the eight values of the dry bulb temperature occurring at each of the principal and secondary observation hours, the value at 0000, 0300, & 2100 U.T. being extracted from the record of the dry bulb thermometer of a mercury in steel hygrograph, except at Kharga where they are obtained from visual readings.

The night-time mean temperature of a day is the mean temperature for the period from sunset of the previous day to sunrise of the same day. The day-time mean temperature refers to the period from sunrise to sunset of the same day. Both night-time and day-time mean temperatures are computed from empirical formulae, which may vary from month to month but are common for all centres. These formulae were found by trial comparison with true means of the year 1966. The errors were never permitted to reach a whole degree, and usually stayed equal to or lower than 0.5°C.

The duration of air temperatures above a specified limit of temperature is obtained graphically from the same recording charts, daily to the nearest whole hour.

The maximum (mercury), the minimum (alcohol) and the dry bulb (mercury ventilated) thermometers are freely exposed in louvred Stevenson screens of the Egyptian type with their bulbs at a height of 190 - 195 centimetres above ground for the maximum and minimum thermometers, and 170 cms approximately for the dry bulb thermometer; the recording thermometer used is of the bi-metallic type and is exposed in a similar screen; the height of the bi-metallic piece is 165 centimetres approximately above the ground.

TABLE C 2.—Extreme Values of Maximum & Minimum Air Temperatures at 1½ metres above Ground, Absolute Minimum Air Temperature at 5 cms above Ground over Different Fields.

The extreme values of maximum and minimum air temperatures at $1\frac{1}{2}$ metres above ground and of minimum air temperatures at 5 cms above ground over dry fields are extracted from their routine values. Dates of occurrences are included in separate columns beside the extreme value. Extreme values of maximum & minimum air temperature at $1\frac{1}{2}$ metres include the Highest & Lowest limits of the daily corresponding routine values during the month.

The thermometers used for minimum air temperature at 5 cms above ground are of the ordinary minimum type (alcohol) with the bulbs screened with small separate screens of horizontal 5 cm. length and 2 cm. diameter metal tubing painted white outside and black inside, and centered on the thermometer bulbs.

TABLE C 3.—(Solar + Sky) Radiation, Duration of Bright Sunshine, Relative Humidity. Vapour Pressure at 1½ meters above Ground, Evaporation & Rainfall.

The monthly total values of the (solar+sky) Radiation, Bright Sunshine duration, Evaporation & Rainfall are the sums of their corresponding daily values for the month. The monthly mean values of the (Solar + Sky) Radiation, Relative Humidity & Vapour pressure at $1\frac{1}{2}$ metres and Evaporation are the arithmetic means of their corresponding daily values for the month respectively.

The (sola: + Sky) Radiation is obtained from the records of a Robitzsch Actinograph; the Robitzsch values at Bahtim and Tahrir are regularly compared with the records of an Epply pyrheliometer installed at the station. The sensitive elements of the Robitzsch Actiongraph and of the Epply pyrheliometer are at 100 cms approximately above the ground.

The types of insturments used for the measurement of the duration of birght sunshine, their exposure and the evaluation of the durations are as given in the notes on table A1.

The relative humidity and vapour pressure values are derived from the readings of ventilated dry and wet bulb mercury thermometers freely exposed in the screen using the Aspirations psychrometer Tafeln of the Deutschen Wetterdienst 1955. The height of the bulbs is 170 cms approximately above the ground.

The mean relative humidity or vapour pressure for a given day is the mean of the eight principal and secondary observation values which are extracted from the readings of the dry and wet bulb thermometers, the values at 0000, 0300, and 2100 U.T. being extracted from the records of the mercury in steel hygrograph except at Kharga where these values are obtained from visual readings of the dry and wet bulb thermometers.

The monthly values of the relative humidity or vapour pressure are the means of the corresponding mean daily values during the month. The lowest value of the relative humidity and its date of occurrence are obtained from the records of a hair hygrograph exposed in the screen, the height of the hair is 170 centimetres approximately above the ground.

The extreme maximum and minimum values of vapour pressure during the month are extracted from the values of the eight principal and seconday observations.

Evaporation measurements are taken once daily at 0600 U.T. from a Piche tube and also a class "A" evaporation pan and give the evaporation for the previous 24 hours. The Piche tube is installed in the screen with the dry bulb, maximum and minimum thermometers; the colour and effective area of the evaporation disc are as given in the notes on table A1. The class "A" evaporation pan is of the type recommended by the commission of instruments and methods of observation of the World Meteorological Organization Rec 42 (CIMO-56); it is of a cylindrical shape, 25 4 centimetres deep, 120.6 centimetres in diameter (inside dimentions). The pan is freely exposed in the open air in the dry field, its rim at a height of 41 centimetres above ground away from obstacles such as buildings or trees.

The types of instruments used for measuring the amount of rainfall, their exposure and the evaluation of these amounts are given in the notes on table A3.

TABLE C 4.—Extreme Soil Temperature at Different Depths (cms) in Dry Fields

The highest and lowest values of soil temperatures at the selected depths in dry fields are extracted from their corresponding daily routine values.

The soil temperature readings are taken in the dry fields at the specified depths ronging from 2 cms to 300 cms in each field as indicated in the table. These readings are taken regularly during the period from 0600 to 1800 U.T. according to the following schedule, except at Kharga where the observations are as appropriate but extend in the peirod between 1800 & 0600 U.T.

- at 0600 U.T. and every three hours for the 2,5 and 10 cms depths.
- at 0600 U.T. and every six hours for the 20 and 50 cms depths.
- at 1200 U.T. for the 100 and 200 cms. depths.
- at 0900 U.T. once every 3 days for the 300 cms depth.

The thermometers used are of the Fuess or the Friedrich types.

TABLE C 5.—SURFACE WIND.

The monthly values of the daily mean, the night time mean and of the day time mean of the surface wind speed is the arithmetic mean of their corresponding daily evaluated values for the month respectively. The mean wind speed of the day is computed for the period of 24 hours from 1800 U.T. of the previous day; the night-time mean wind speed of the day is obtained from the total run of air during the period 1800 U.T. of the previous day to 0600 U.T. of that day; the day-time mean is similarly computed for the period 0600 to 1800 U.T. of the same day. The type of the wind instrument used is of the run counter of the Lambrecht type; the cups of which are at $1\frac{1}{2}$ metres above the ground.

The number of days with surface wind speed reaching or exceeding specified values of velocities (\geq 10 Knots, \geq 15 Knots, \geq 20 Knots, \geq 25 Knots, \geq 30 Knots, \geq 35 Knots and \geq 40 Knots) for at at least 5 minutes at any time between 2200 & 2200 U.T. irrespective of its direction are extracted from the daily routine analysis of surface winds records during the whole month. The daily records of the Dine Pressure Tube Anemograph are used, the highest gust refer to the highest excursion made by the velocity pen on the records during the month. The head of the instroment is at a height of 10 metres above the ground level.

LIST OF STATIONS APPEARING IN THE REPORT - SYNOPTIC AND CLIMATOLOGICAL STATIONS

District.	Station	Index Number 11 iii Latitude °N	Longitude °E Elevation of the ground in metres (H or Ha) Altitude of the Station	Height of Wind recording instruments (metres) above above und ing nd	Synoptic Observations	ions g. ns 000)	per air observations P (Pilot Ballon) W (Radio wind) R (Radio Sonde)	Remarks
r		Inde	Lon Elevation in met.	The state of the s			06 12 18	
Mediter-	Sallum	62 300 31 32 2 306 31 20 2 318 31 12 2 333 31 17 3 336 31 07 3 338 31 30 3	$egin{array}{cccccccccccccccccccccccccccccccccccc$	5.2 10 14 .0 30.0 8 15 .0 6.8 10 18 .1 6.1 10 19 — — —	X X X X X X X X X X X X X X X X X X X	H R H P	- P W R W P	
Lower Egypt	Tanta	348 30 47 3	1 00 14.0 1	.8 15.4 10 14		н _	_ _ _	
Cairo Area	Cairo (A) Helwan	366 30 08 3 378 29 52 3		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\times \times $	h	$\overline{\mathbf{w}}$ $\overline{\mathbf{R}}$ $\overline{\mathbf{w}}$	
Upper	Fayoum (A) Minya (A) Assyout (A) Luxor (A) Aswan (A)	381 29 18 3 387 28 05 3 393 27 11 3 405 25 40 3 414 23 58 3	$egin{array}{ccccc} 0 & 44 & 29.0 & 46 \ 1 & 06 & 71.0 & 69 \ 2 & 42 & 94.9 & 86 \ \end{array}$.3 23.2 10 14 .0 44.2 7 10 .6 69.5 15 20 .5 88.4 7 15 .5 200.0 10 14		H P	- P W W	
Western Desert	Siwa Bahariya Farafra Dakhla Kharga	417 29 12 2 420 28 20 2 423 27 03 2 432 25 29 2 435 25 27 3	8 54 128.0 129 7 58 90.0 91 9 00 110.0 111	.5 129.6 — — — — — — — — — — — — — — — — — —		H P H P	- P - P P - P P - P P - P P - P P - P P - P P - P P - P P - P P - P P - P	
Red	Tor	459 28 14 33 462 27 17 33 465 26 08 34	3 46 1.0 2	.8 2.8 8 12 3 11.3 12 15				

GENERAL SUMMARY OF WEATHER CONDITIONS

JANUARY 1969

Cold Weather in the Northern and Central parts, Rather Cold and dry in the Southern Parts. Abnormally High Rainfall in the North

GENERAL DESCRIPTION OF WEATHER

The prevailing weather during this month was generally cold in the northern and central parts. and rather cold in the southern parts. Weather was remarkably cold night time, especially in the Western Desert and north of Upper Egypt areas. where minimum temperature approached 0°C during many nights. Three pronounced cold waves prevailed most days of this month; the third cold wave was the most intense and longest; it prevailed from the 19th till the end of the month. The cold waves were separated by short periods of mild weather round the 2nd, 11th and 17th.

Light to moderate rain fell over the northern parts during many days of this month, and extended southwards during few days. Rain was locally heavy and associated with thunderstorms over the Mediterranean district, mainly during the last cold wave.

Rising sand occurred over scattered parts, mostly in association with frontal passages round the 4th, 12th, 18th, 28th. Early morning mist and fog developed during few days over scattered places in Delta, Canal & Cairo areas and in north of Upper Egypt district.

PRESSURE DISTRIBUTION

The most outstanding pressure systems on the synoptic surface maps during this month were:

- The Siberian anticyclone.
- Deep low pressure systems through North Eurasia.

- Secondary depressions through the Mediterranean and its vicinities.
- The subtropical high pressure belt over the Atlantic and North Africa.

During this month, four low pressure systems traversed the Mediterranean. The first complex low developed over Central Mediterranean on the 1st. This system moved slowly eastwards reaching Cyprus area on the 6th, where it amalgamated in one depression which remained quasistationary till it filled up there on the 8th.

The second Mediterranean depression developed over the gulf of Genewa on the 8th. It moved to Central Mediterranean on the 9th, meanwhile a desert secondary formed over west of the Libyan Desert. This system proceeded eastwards passing through East Mediterranean and U.A.R. on the 13th.

The third depression formed on the 16th also over the gulf of Genewa. It moved slowly eastwards reaching Cyprus area on the 20th where it deepened appreciably till the 21, then it proceeded eastwards while filling on the 22nd.

The fourth and last complex low during this month appeared over East Mediterranean on the 25th; it amalgamated in one centre over Cyprus on the 26th, then it proceeded eastwards next day towards Iraq.

As a result of the transit of the above mentioned four depressions through East Mediterranean area, the barometric pressure in U.A.R. showed four oscillations and remained below its normal most days of the month with pronounced minima round the 6th, 13th, 21st & 27th.

High pressure established over U.A.R. after he passage of the Mediterranean troughs. t extended either from the subtropical high pressure belt, or from the Siberian anticyclone

W ridge. As a result the barometric pressure a U.A.R. was above its normal round the hort periods: (8-11), (14-15), (24-25) and 28-31).

The most important fleatures of pressure istribution over the synoptic upper air charts were:

- Two deep upper lows, one over North Russia and the other over North Atlantic
- Secondary upper lows or troughs over ne Mediterranean and its vicinities, traversng East Mediterranean and north of U.A.R. n the 9th, 13th, 23rd and 28.

SURFACE WIND

The prevailing winds in the northern parts the Republic were generally light to oderate SWly; they changed to NWly during we days, mainly after the passage of the lediterranean troughs through U.A.R.

In Upper Egypt and Western Desert districts ght to moderate W, NW winds prevailed; ough SWly winds blew during several days.

The Red Sea area was characterized by e prevalence of light to moderate N, NE ands most days of the month.

Winds become fresh to strong during veral days by the passage of Mediterranean oughs, and mainly during the period (17th-rd). On the other hand calms were freent most of night and early morning tervals in scattered parts.

Gales were reported at Balteem on the 28th & 29th and at Hurghada on the 29th.

TEM PERATURE

Maximum air temperature was much changeable and generally below normal. Its values ranged most days of the month between 15°C and 21°C in the northern and central parts, between 19°C & 26°C in the southern parts.

The absolute maximum air temperature for the month was 29.1°C recorded at Kom Ombo on the 18th.

Minimum air temperature was much changeable, round normal in the northern parts, and below normal most days of the month in the central and southern parts: Its values ranged most of the month between 5°C, 12°C in the northern and southern parts, and between 1°,8°C in the central parts.

The absolute minimum air temperature for the month was -1.4°C recorded at Siwa on the 5th.

PRECIPITATION

Rain fell over the northern parts during many days of this month, and extended to scattered places in the central parts during few days. The daily rainfall was light to moderate in general, though it was heavy over the Mediterranean district during several days, particularly on the 21st, 22nd & 27th. The monthly rainfall was above normal in general.

The highest daily rainfall was 43.0 mm recorded at Alexandria on the 22nd.

The highest monthly rainfall was 176.4mm at Ras El Teen.

M. F. TAHA

Under Secretary of State
Director General
Meteorological Department

Table A 1. — MONTHLY VALUES OF THE ATMOSPHERIC PRESSURE, AIR TEMPERATURE, RELATIVE HUMIDITY, BRIGHT SUNSHINE DURATION & PICHE EVAPORATION.

JANUARY — 1969

		spheric re (mbs)				Air T	Cemperatu	re °C					ative	Brig	ht Sunshi		mms)
		S.L.	Мах	i mum	Mini	mum	,	Dry	Bulb	Wet	Bulh	Humid	lity %	Dura	tion (Hou	irs)	tion (
STATION	Mean	D.F. Normal or Average	(A) Mean	D.F. Normal or Average	(B) Mean	D.F. Normal or Average	$\frac{A+B}{2}$	Mean	D.F. Normal or Average	Mean	D.F. Normal or Average	Mean	D.F. Normal or Average	Total Actual	Total Possible	%	Fiche Evaporation (mms) Mean
Sallum	1014.2 1013.9 1014.5 1013.8	- 3.3 - 3.5 - 3.2 - 3.6	17.1 16.6 16.9 16.8	- 1 8 - 1 6 - 1 6 - 1 3 -	9.4 7.8 8.9 10.0	+ 0.2 - 0.5 - 0.4 - 1.4	13.2 12.2 12.9 13.4	12.8 11.7 12.6 12.8	- 1.4 - 1.2 - 1.0 - 1.5	9.2 9 3 10.0 10.5	- 1.1 0.5 1.0 1.4	59 72 70 74 —	+ 1 + 7 0 + 2 -	 176 4 177.9 	322.3 322.3 —	55 55 	6.4 5.8 4.3 3.8 —
Tanta	1014.9	_ 2.5	17.5	2.2	7.3	+ 1.1	12.4	11.8	- 0.8	9.2	0.8	66	-4	188.3	323.4	58	3.5
Cairo (A)	1015.0	~ 3.0	17.5	- 1.5	8.5	- 0 3	13.0	12.8	- 1.0	9.1	1.0	58	_ 1	_	<u> </u>	-	9.1
Fayoum	1016.0 1015.7 1015.8 1015.8	$ \begin{array}{r} -2.6 \\ -3.1 \\ -1.3 \\ -1.2 \end{array} $	18.6 18.8 19.7 21.1 22.3	$ \begin{array}{r} -1.8 \\ -1.9 \\ -1.1 \\ -2.0 \\ -1.9 \end{array} $	5.5 2.9 5.8 4.4 7.1	$ \begin{array}{c c} -0.8 \\ -1.1 \\ -1.0 \\ -1.2 \\ -1.3 \end{array} $	12.0 10.8 12.8 12.8 14.7	11.7 10.8 12.3 12.9 14.2	$ \begin{array}{c c} -1.6 \\ -1.1 \\ -1.3 \\ -1.3 \\ -1.8 \end{array} $	8.6 7.6 8.4 8.5 7.8	$ \begin{array}{c c} -1.3 \\ -0.6 \\ 0.0 \\ -1.0 \\ -1.3 \end{array} $	63 61 55 51 33	+ 2 + 3 + 9 - 1 0	241.0 ————————————————————————————————————	328.8 - - -	73 — — —	3.2 5.9 7.2 4.4 10.7
Siwa	1014.9 1015.7 ————————————————————————————————————	- 3.8 - 2.9 - 0.8 - 1.4	18.7 18.8 19.3 20.0 20.7	$ \begin{array}{c} -1.0 \\ -1.2 \\ -1.5 \\ -1.5 \\ -0.5 \end{array} $	5.8 5.2 4.2 2.5 3.3	$ \begin{array}{r} + 1.5 \\ + 0.7 \\ - 0.2 \\ - 1.8 \\ - 2.6 \end{array} $	12.2 12.0 11.8 11.2 12.0	12.0 11.7 ——————————————————————————————————	$\begin{vmatrix} + & 0.1 \\ - & 1.1 \\ - & 1.3 \\ - & 2.1 \end{vmatrix}$	7.7 7.4 — 6.8 6.8	$ \begin{array}{c c} -0.2 \\ -0.9 \\ -0.2 \\ -2.0 \end{array} $	51 50 51 45	$ \begin{array}{c c} -1 & 0 \\ -1 & +14 \\ 0 & 0 \end{array} $		- - - 334.6	- - - 89	6.1 5.3 — 6.7 7.4
Tor	1014.6 1015.4	- 2.1 - 1.1	20.8 21.5	· _ 0.0 _ 1.1	8.7 12.5	- 1.0 - 1.3	14.8 17.0	15.0 17.1	- 0 9 - 1 2	_ 10.1 11.4		_ 50 46		_ 	<u>-</u>	_ _ _	9.7 10.5

			Ma	aximum	Tempera	iture °C)			Grass Ten				Minim	ıum Tem	perature	°C		
Station	Highest	te	est	te	No.	of Day	ys with	Max-To	emp.	Mean	From Normal	Highest	te	est	te	N	o. of D Min. 7	•	, h
	Hig	Date	Гомея	Date	> 25	>30	> 35	>40	45	Me	D. From	High	Date	Lowest	Date	<10	< 5	<0	<-5
Sallum	21.4 22.6 21.6 23.5	17 17 17 17 	13.3 11.6 12.0 12.6	28 28 22 29	0 0 0 0	0 0 0 -	0 0 0 0	0 0 0 0	0 0 0 0	9.3 7.5 9.7 		14.5 12.5 11.8 15.0	11 12 12 1	5.7 3.8 5.7 6.6	4 5 6 28·29	21 29 23 17 —	0 2 0 0 -	0 0 0 0 -	0 0 0 0 -
Tania	23 1	17	11.4	28	0	0	0	0	0			11.4	12	3.8	10	27	3	0	0
Cairo (A)	24.8	17	11.1	28	0	0	e	0	0		-	12.5	1	4.0	2	23	1	0	0
Fayoum (A) Minya (A) Assyout (A) Luxor (A) Aswan (A)	25.9 25.3 28.0 27.2 28.4	17 17 17 17 17	13.4 14.9 14.7 16.6 15.5	28 22 29 28 29	1 1 2 6 8	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	3.5 1.1 3.5 2.4		11.1 9.8 11.2 8.6 10.4	20 20 21 13 22	2.6 0.0 2.8 0.6 3.5	6 6 29 7 30	29 31 29 31 29	13 22 10 19 3	0 0 0 0	0 0 0 0
Siwa Bahariya Farafra Dakhla Kharga	26.4 26.1 28.5 26.6 25.2	17 17 17 17 17	13.4 14.7 13.7 14.8 15.8	27 29 23 29 29	2 1 2 3 1	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	4.1 3.4 3.4 — 1.2		13 5 11.6 9.7 8.1 8.3	20 12 13 21 21	-1.4 0.9 -1.2 -1.2 0.4	3.5 30,31 3 10	28 29 31 31 31	13 17 20 26 26	1 0 2 1	0 0 0
Tor	25.0 25.8	18 21	16.7 16.8	 29 29	0 1	0 0	0 0	0 0	0 0	— 11.1		12.3 16.6	4 4	5.6 9.1		24	0 0	0 0	0 0

- 17 —

		Mean	Sky Cove	r Oct.					Rair	fall mr	ns.					
Station	00	06	12	18	Daily	Total	D. From		. Fall e day	N	lumber	of Day	s with	Amount	of Ra	in
	U.T.	U.T.	U.T.	U.T.	Mean	Amount	Normal	Amount	Date	<0.1	≥0.1	≥1 0	≥5 0	≥10	≥ 25	≥50
Sallum (A) Mersa Matruh (A) Alexandria (A) Port Said (A) El Arish (Chazza	4.8 3.6 4.8	4.1 4.6 5.5 4.1	5.1 5.3 5.9 4.4	4.5 3.9 4.8 —	4.6 4.2 5.1	36.2 86.8 158.3 14.5	$\begin{array}{c} +17.4 \\ +56.1 \\ +109.2 \\ +2.0 \\ \end{array}$	10.1 24.9 42.6 6.2	20 21 22 19 —	0 1 0 1 -	12 15 17 11 —	7 11 13 4	3 6 8 1	2 4 5 0	0 0 2 0 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Canta	2.0	3.4	4.l	3.0	3.0	13.6	+ 3.4	3.7	12	0	10	3	0	0	0	0
airo (A)	2 .5	4.3	4.5	2.9	3.6	13.8	+ 8.7	4.0	12	3	10	5	0	0	0	0
Yayoum finya Alssyout Auxor Alswan	0.5 0.4 0.5 0.6	3.4 2.5 1.5 0.7 0.8	4.4 3.1 2.7 1.6 1.5	3.5 1.3 1.2 1.4 0.8	1.9 1.2 1.0 0.9	0.3 0.6 tr. 0.6 0.0	- 0.7 + 0.2 0.0 0.1 0.0	0.1 0.6 tr. 0.0 0.0	21 · 26 · 27 12 22 —	4 4 1 0 0	3 1 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0
iwa	2.5 1.0 — 0.5 0.0	2.3 2.2 1.6 0.4 0.5	3.4 3.3 2.6 2.0 2.0	2.2 1.0 0.6 0.6 0.9	2.8 1.4 0.9 0.8	3.4 3.7 8.9 5.0 tr.	+2.5 +3.7 +8.9 +5.0 +0.1	1.5 2.4 7.7 5.0 tr.	22 12 23 23 18·23	0 1 0 0 2	6 2 3 1 0	2 2 1 1 0	0 0 1 1 0	0 0 0 0	0 0 0 0	0 0 0
or	1.1 0.4	1.5 1.9	2.4 1.9	- 1.9 1.4	 1.7 1.4	0.0 tr		0.0 tr.		0 1	0 0	0 0	- 0 0	0 0	0 0	000

Table A 4. — DAYS OF OCCURRENCE OF MISCELLANEOUS WEATHER PHENOMENA.

JANUARY — 1969

Station	Rain	Precipi Snow	Ice.	Hail	Frost	Thunderstorm	Mist Vis ≥ 1000 metres	Fog Vis <1000 Metres	Haze Vis	Thick Haze Vis	Dust or Sandrising Vir ≥1000 Metres	Dust or Sandstorm Vis <1000 Metres	Gale	Clear Sky	Cloudy
Sallum (A) Mersa Matruh (A) Alexandria (A) Port Said (A) Al Arish (A) Ghazza (A)	12 14 16 12 —	0 0 0 0 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2 0 	0 0 1 2	0 1 3 0 -	1 0 0 0 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 5 1 0	0 1 0 0 -	0 0 0 0 	2 6 0 	3 7 12 —
Tanta	11	0	0	0	0	0	4	0	0	0	0	0	0	12	0
Cairo (A) Fayoum Minya Assyout Luxor Aswan	3 1 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	1 10 1 0 0	2 0 3 1 0	10 0 3 3 12 0	0 0 0 0 0	0 4 3 3 0	0 0 0 0 0 0	0 0 0 0 0	11 16 24 25 23	0 0 0
Si 4 Bahariya. Farafra Dakhla Kharga	5 2 3 1 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 1 1 0 0	0 0 0 0 0	0 1 0 0 0	0 0 0 0 0	5 2 0 6 3	0 0 0 0 0	0 0 0 0	11 20 	1 0 0 0
Tor	0 0	0 0	0 0	0 0	0 0	_ 0 0	0 0	0 0	1 0	0 0	12 1	1 0	1 0	15 21	0 0

- 61

Table A 5,--NUMBER IN HOURS OF OCCURRENCES OF CONCURRENT SURFACE WIND SPEED AND DIRECTION RECORDED WITHIN SPECIFIED RANGES JANUARY --- 1969

	rs}	urs)	hours)]	Numb	er in		s of c					blowin ted	ng fro	om tl	he
Station	Calm (hours)	Variable (hours)	Unrecorded (hours)	Wind speed in knots	345 / 014	- 1	015 074	1	105 / 134	1	165 / 194	1 /	1	1	285	1	All directions
Sallum	3	0	0	1~10 11~27 28~47 ≥48 All speeds	19 5 0 0 24	6 0 0 0 6	8 0 0 0 8	7 0 0 0 7	3 0 0 0 3	8 0 0 8	16 3 0 0 19	11 43 0 0 54	24 83 0 0	63 152 1 0	88 123 2 0 213	50 26 0 0 76	303 435 3 0 741
Mersa Matruh . (A)	4	0	0	1-10 11-27 28-47 ≥48 All speeds	1 10 0 0	10 8 0 0 18	2 2 0 0 4	2 0 0 0 2	11 9 0 0 20	13 6 0 0 19	30 48 0 0 78	0	37 184 3 0 224	42 125 1 0 168	13 45 0 0 58	4 41 3 0 48	188 544 8 0
Alexandria (A)	1	0	0	1–10 11–27 28–47 ≥48 All speeds	13 4 0 0 17	19 0 0 0 19	14 0 0 0 14	11 0 0 0 11	39 0 0 0 39	33 4 0 0 37	43 13 0 0 56	118 106 4 0 228	51 76 0 0	47 15 0 0 62	25 60 0 0 85	32 16 0 0 48	445 294 4 (
Port Said (A)	2	0	0	1-10 11-27 28-47 ≥48 All speeds	5 0 0 0 5	30 0 0 0 30	20 0 0 0 0 20	18 2 0 0 20	19 1 0 0 20	24 3 0 0 27	46 63 0 0	113 135 0 0 248	94 74 1 0 169	29 36 2 0 67	11 11 0 0 22	4 1 0 0 5	41: 32: :
Tanta	46	0	0	1-10 11-27 28-47 ≥48 Alf speeds	7 0 0 0 7	14 0 0 0 14	8 0 0 8	26 0 0 0 26	26 0 0 0 26	32 0 0 0 32	214 16 0 0 230	180 32 0 0 212	86 0 0 0 86	22 8 0 0 30	13 0 0 0 13	14 0 0 0 14	64 5 69
Cairo (A)	27	0	0	1-10 11-27 28-47 ≥ 48 All speeds	7 0 0 0 0 0 7	8 5 0 0 13	22 2 0 0 24	13 0 0 0 13	12 3 0 0 15	23 3 0 0 26	91 76 0 0 167	79 121 0 0 200	64 42 0 0 108	55 26 0 0 81	45 8 0 0 53	12 0 0 0 0	43 28 71
Fayoum	28	ī	8	1-10 11-27 28-47 ≥48 Aff speeds	47 0 0 0 47	34 0 0 0 34	11 0 0 0	15 0 0 0 15	15 0 0 0 15	28 0 0 0 28	89 3 0 0 92	137 12 0 0 149	145 32 0 0 177	61 0 0 0 61	39 6 0 0 45	32 1 0 0 33	6t t
Minya (A)	72	15	0	1-10 11-27 28-47 ≥48 All speeds	001 00 0	23 0 0 0 23	1 0 0 0	0 0 0	1 1 0 0	79 0 0 0 79	121 9 0 0 130	43 4 0 0 47	59 9 0 0 68	48 18 0 0 66	36 5 0 0 41	69 12 0 81	5 6

Table A 5 (contd)—NUMBER IN HOURS OF OCCURRENCE OF CONCURRENT SURFACE WIND SPEED AND DIRECTION RECORDED WITHIN SPECIFIED RANGES

JANUARY -- 1969

	(ŝ.	urs)	iours)			Num	iber :			occu				l blow ated	ing f	rom	the
Station	calm (hours)	Variable (hours)	Unrecorded (hours)	Wind speed in knots	345 / 014		045 / 074	075 / 104	1	135 / 164		195 / 224	1	255 / 284	1	1	All directions
syout (A)	5	θ	~	I -10 11 -27 28-47 ≥48 All speeds	17 2 0 0	7 0 0 0 7	19 0 0 0 19	24 0 0 0 24	38 2 0 0 40	20 3 0 0 23	24 5 0 0 29	12 13 0 0 25	40 0 0	179 39 0 0 218	139 30 0 0 169	74 25 0 0 99	573 159 0 0 732
ахог (А)	2	0	1	1-10 11-27 28-47 ≥48 All speeds	42 0 0 0 42	29 0 0 0 29	38 0 0 0 38	56 0 0 0 56	36 0 0 0 36	0 0 0	126 0 0 0 126	56 9 0 0 65	56 12 0 0 68	87 15 0 0 102	52 20 0 0 72	51 0 0 0 51	685 56 0 0 741
swan (A)	5	3	3	1-10 11-27 28-47 ≥48 All speeds	270 45 0 0 315	58 6 0 0 64	12 0 0 0 12	1 0 0 0	1 0 0 0	0 0 0 0	14 3 0 0 17	13 2 0 0 15	26 5 0 0 31	35 20 0 0 55	44 17 0 0 61	127 34 0 0 161	601 132 0 0 733
wa	12	0	0	1-10 11-27 28-47 ≥48 All speeds	7 2 0 0 9	8 0 0 8	17 0 0 0 0	56 0 0 0 56	48 4 0 0 52	25 1 0 0 26	33 3 0 0 36	22 7 0 0 29	79 17 0 0 96	149 73 0 0 222	92 48 0 0 140	21 20 0 0 41	557 175 0 0 732
akhla ,	34	4	0	1-10 11-27 28-47 ≥48 All speeds	18 0 0 0 18	26 0 0 0 26	49 0 0 0 49	40 0 0 0 40	45 0 0 0 45	17 0 0 0 0	43 0 0 0 43	33 1 0 0 34	69 1 0 0 70	124 23 0 0 147	125 11 0 0 136	60 21 0 0 81.	649 57 0 0 706
harga	20	5	33	1-10 11-27 28-47 ≥48 All speeds	96 45 0 0	51 8 0 0 59	15 0 0 0 15	18 0 0 0 18	22 0 0 0 22	32 1 0 0 33	24 4 0 0 28	23 5 0 0 28	39 3 0 0 42	55 15 0 0 70	92 10 0 0 102	105 23 0 0 128	572 114 0 0 686
urghada	7	0	16	1 ·10 11-27 28-47 ≥48 All speeds	23 74 2 0 99	34 4 0 0 38	15 0 0 0 15	18 0 0 0 18	18 1 0 0	8 6 0 0 14	14 1 0 0 15	10 1 0 0 11	20 0 0 0 20	0	0	66 175 2 0 243	335 382 4 0 721
180ir	0	0	0	1-10 11-27 28-47 ≥48 All speeds	38 37 0 0	36 2 0 0 3 8	27 0 0 0 27	16 0 0 0 16	11 2 0 0 13	5 4 0 0 9	6 0 0	19 9 0 0 28	10 0 0	229 46 0 0 275	115 41 0 0 156	16 26 0 0 42	567 177 0 0 744

Table B 2.-MEAN AND EXTREME VALUES OF THE FREEZING LEVEL AND THE TROPOPAUSE. THE HIGHEST WIND SPEED IN THE UPPER AIR JANUARY - 1969

					Free	zing Le	vel							First	Tropo	pause				Highe	st wi	ind sp	eed	
			Mean			Highest	t		Lowest			Mean]	Highest			Lowest	;	ब	÷		ta jta	
	Station	Altitude (gpm)	Pressure (mb.	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Direction (000 -360)	Speed in Knots	
		(N)	(N)	(N)							(N)	(N)	N)											
٤.	Mersa Matruh (A)	2109 (26)	786 (26)	-7.7 (26)	3400	676	-11.9	1120	892	-3.1	10 594 (16)	244 (16)	-56.8 (16)	12870	170	-64.0	7970	349	-46.7	12940	167	3 10	128	24
0000 U.T.	Helwan	2113 (30)	787 (3 0)	-7.3 (30)	3570	660	-8.2	1100	892	-2.7	10087 (28)	254 (28)	-55.2 (28)	14480	134	-66.7	7091	400	-36.9	6780	419	250	150	Ī
	Aswan (A)	3451 (31)	670	-17.3 (31)	4230	609	-25.1	1880	808	-5.5	14918 (23)	138 (23)	-71.0 (23)	17430	84	-70.5	11340	215	57.3	11965	204	255	195	
			! :															,						
		(N)	(N)	(N)							(N)	(N)	(N)) 									
.T.	Mersa Matruh (A)	2148 (27)	782 (27)	-7.4 (25)	3440	670	-21.7	1220	880	-4.2	10611 (18)	24 3 (18)	-5 6 .3 (18)	12830	173	-68.5	8100	342	-48.5	9105	306	2 3 5	150	
1200 U.T	Helwan	2282 (30)	773 (30)	-8.7 (30)	3690	650	-18.1	1150	884	-1.5	10888 (27)	237 (27)	-55. 6 (27)	130 2 0	169	-62.7	8000	3 5 2	-39.0	7270	391	250	150	
	Aswan (A)	3552 (30)	663 (30)	-19.7 (30)	4450	594	-22.1	2000	795	-10.2	15592 (25)	122 (2 5)	-68.4 (25)	18250	74	-74.9	12 220	204	-66.3	11920	205	245	200	

Table B 3.—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES.

MERSA MATRUH (A) JANUARY 1969

					Wind h	etween spe	ecified ran	ges of dire	ection (0	00-3	60)°					u.	af r N)	ind (a)
Time	Pressure Surface (Millibar.)	345 / 014	015	045 / 074	0.75	105 / 134	135 / 164	165 / 194	195 / 224	Age	225 / 254	25 / 28	1	285 / 314	315 / 344	Number of Calm winds	Number a	Mean Soalar wind Speed (Knots)
	(N (tt)		N (ff)	N (ff)		N (ff)	(ff) N m	N (er)	N (ff)	N	(ff)	N (ff)	N (ff)	Numbe	Total Deserve	Mean Speed
0000 U.T.	Surface	0	1 8 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	2 12 1 9 1 7 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0	1 2 1 13 1 14 1 15 0 0 0 0 0 0 0	1 1 1 1 0 4 4 3 4 4 3 4 3 4 3 4 4 4 3 4 3 4 4 3 4 4 3 4 4 4 4 3 4	13 14 332 330 331	1 13 5 19 7 25 8 27 5 34 0 4 44 4 48 3 67 1 82 0 —	1 7 5 5 7 10 8 8 6 5 4 1 — — — — — — — — — — — — — — — — — —	-	2 14 2 15 5 23 7 28 8 31 6 41 3 53 3 63 2 75 8 8 0 —	3 18 3 21 6 22 4 16 3 31 3 35 3 45 2 44 1 79 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27 25 27 26 26 25 24 17 13 9 4 1	12 16 28 22 30 38 47 62 69 80 70 55
1200 U.T.	Surface	0 -1 13 30 -1 1 55 -1 1 55 -1 1 0 -1 1 0 -1 1 1 1 1 1 1 1 1 1 1 1	1 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0 -	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	3 18 0 20 1 9 0	3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0	22 27 22 113	4 23 3 21 4 18 4 30 5 35 5 3 67 0 — 2 66 2 80 0 — 0 —	85788989952000—————————————————————————————————	_	3 15 8 17 7 25 9 24 7 28 8 29 4 46 5 52 4 71 2 50 1 19 0	4 18 3 25 5 24 3 32 3 40 3 45 6 34 3 50 2 46 1 43 0 0 0		26 25 27 26 26 25 24 23 19 17 16 7 3 1	18 20 21 27 3. 37 47 58 63 69 67 63 19

N = The number of cases the element has been observed during the month,

TN = The total number of cases the wind has been observed for all directions during the month,

Table B 3.(contd.)—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES.

HELWAN—JANUARY 1969

			Wind be	etween specified ra	nges of direction	on (000— 36 0)°		Calm oer of (TN) wind ots)
Time	Pressure Surface (Millibar.)	345 015 045	104	105 135 / 134 164 N (ff) m N m	/ /	95	315 285 255 344 314 284 N m N m m	Number of winde Fotal Numbe baservations Mean Scalar Speed (Kno
0000 U.T.	Surface	3 6 0 - 3 8 0 - 2 10 3 5 2 13 0 - 0 - 0 0 - 0 - 0 - 0 0 - 0 - 0 - 0 1 15 0 - 0 - 0 0 - 0			2		3 7 1 4 0 — 3 9 1 4 0 — 2 14 3 23 0 — 9 31 3 17 2 38 9 39 2 32 1 34 8 45 1 42 1 36 8 79 1 81 0 — 3 44 3 90 0 — - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <th>3 30 5 0 13 7 0 29 21 0 26 28 0 25 37 0 25 51 0 20 73 0 9 71 0 1 136</th>	3 30 5 0 13 7 0 29 21 0 26 28 0 25 37 0 25 51 0 20 73 0 9 71 0 1 136
1200 U.T.	Surface	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -		0	3 13 10 1 16 4 4 11 3 3 0 — 6 6 0 — 2 0 — 0 0 — 0 0 — 0 — —		3 8 4 11 1 4 0 - 4 16 1 4 4 34 3 23 1 12 5 27 5 30 0 - 6 41 2 32 1 56 7 49 1 40 1 43 8 86 0 - 1 94 4 88 0 - 0 - 2 96 0 - 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	1 30 9 0 14 10 0 30 24 0 28 33 0 23 40 0 22 50 0 16 81 0 7 87 0 4 96 0 2 96

N = Number of cases the element has been observed during the month,

THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SCLECTED PRESSURE SURFACES. ASWAN (A) — JANUARY 1969

								W	ind b	etwe	en sp	eciflec	l rang	ges of	dire	tion	(000-	- 360))°							Calm	r of r N)	s)
Time	Pressure Surface (Millibar.)	l	45 / 14	01	/	045 / 074		07 / 10	1	10	/	13 / 16		16	1	19	/	22 25	1		15 / 44	28	35 / 14	28	55 / 84	of ide	Number of estions (T N)	Scalar wind ed (Knots)
Et .	(Millioar.)	N	(ff)	N	(ff)	N ((ff)	N	(ff) m	N	(ff)	N	(ff)	N	(ff) m	N	(ff)	N	(ff)	N	(ff)	N	(ff)	N	(ff)	Number	Total I Observa	Mean Speed
0000 U.T.	Surface	14 -2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7. 14	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13.	0	7	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 17	0 2 3 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 1	10 14 22 	0 3 6 12 11 7 10 10 11 5 6 7 4 4 3 1	14- 25- 43- 53- 74- 107- 115- 113- 91- 45- 43- 29- 40- 35- 13-	2 	8 	7 5 2 2 3 0 0 0 0 0 0 1 1 1 1	8 — 12 17 27 35 53 — — — 59 7 30 17 — —	9 3 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0	9 15 24 30 49 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31 30 30 30 30 30 30 29 28 26 19 15 13 11 10 9 6	8
1200 U.T.	Surface	14 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	16 8 22 — — — — — — — — — — — — — — — — —	4 1 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 10 15 14	0 2 0. 0 0 0 0 0 0 0 0	- H 	0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 		3	1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 7	0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 9 9	1 0 1 1 1 2 2 1 1 1 0 0 0 0 0 0 1 1 1 1	14 	2 0 2 10 10 11 11 10 13 10 9 7 3 3 3 1 1 0 0 0	16 -12 30 41 62 68 98 129 112 84 43 28 25 38 	2 0 0 8 13 177 155 144 188 197 177 188 8 9 1 0 1 2 2 —	13 29 34 45 64 85 91 104 104 65 41 26 13	2 0 4 4 5 2 0 0 3 2 1 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0	19 28 - 43 44 59 - - - 22 30 - -	2 0 4 4 2 3 3 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0	8 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 2 30 30 30 30 29 29 29 28 24 21 14 13 9 6 6	10 13 12 23 36 50 62 89 103 114 107 68 41 26 22 20 18 20

N = The number of cases the element has been observed during the month.

TN = The total number of cases the wind has been observed for all directions during the month.

REVIEW OF AGRO-METEOROLOGICAL STATIONS

EL KASR - JANUARY 1969

This month was slightly cooler and appreciably more rainy than normal. The total monthly rainfall was 98.6 mms. against 24.6mms. for normal. The month was characterized by three cold waves during the periods (4th — 10th), (12th — 13th) and (18th — 31st). The third cold wave was markedly long and intense, yielding the lowest maximum air temperature for the month (12.1°C) on the 28th and the maximum daily rainfall (21.9 mms) on the 21st. Three short warm spells occurred during the first two days, on the 11th, and during the period (16th — 17th). The last warm spell yielded the highest maximum air temperature for the month (23.3°C) on the 16th.

The extreme maximum soil temperatures were lower than the corresponding values of last January at all depths between 2 and 100 cms. and the differences ranged between 0.2°C at both 5 and 10 cms. depths and 1.2°C at 50 cms. depth. The extreme minimum soil temperatures were lower than the corresponding values of last January at all depths apart from the 10 cms. depth where the value was slightly higher (0.2°C), the differences ranged between 0.3°C at 5 cms. and 1.1°C at 100 cms. depth.

The daily mean Pan evaporation was 1.77 mms, less than the corresponding value of January 1968. The total actual duration of bright sunshine was 5.3 hours more than the corresponding value of January 1968.

TAHRIR - JANUARY 1969

Compared with last January, this month had nearly the same mean daily air temperature but was more rainy. The total monthly rainfall was 13.7 mms. against 5.6 mms. for last January. The month was characterized by three pronounced cold waves during the periods (2nd — 8th), (12th — 14th) and (18th — 31st). The third cold wave was markedly long and yielded the lowest maximum air temperature for the month (11.8°C) on the 28th. The second cold wave was the shortest, but it was associated with the maximum daily rainfall (7.4 mms.) on the 12th. Three short warm spells occurred on the 1st, 11th and (16th — 17th) respectively.

The extreme maximum soil temperature at 2 cms. depth was the same as Last January. At all other depths between 5 and 100 cms. the values were higher than last January with differences ranging between 1.2°C at 5 cms. and 0.1°C at both 20 and 50 cms. The extreme minimum soil temperatures were lower than last January at all depths apart from 10 and 100 cms. depths where the values were slightly higher (0.2°C), the differences ranged between 1.1°C at 2 cms. 0.2°C at 20cms.

The daily mean Pan evaporation was 1.0 mms. less than the corresponding value of January 1968. The total actual duration of bright sunshine was 37.1 hours less than the coresponding value of January 1968.

BAHTIM - JANUARY 1969

Compared with last January, this month was slightly warmer and more rainy. The total monthly rainfall was 13.5 mms. against 5.5 mms for last January. The daily maximum air temperatures were below normal during all the month except on the 17th when a warm spell occurred yielding the highest maximum air temperature for the

month (24.5°C). The month was characterized by three pronounced cold waves during the periods (4th-8th), (12th-15th) and (18th-31st). The third cold wave was markedly long and yielded the lowest maximum air temperature for the month (12.2°C) on the 28th. The minimum air temperature at 5 cms above ground fell below 0°C on the 15th only when its value reached -0.5°C.

The extreme maximum soil temperatures were lower than the corresponding values of last January at shallow depths between 2 and 10cms and the differences ranged between 5.0°C at 2 cms and 0.4°C at 5 cms. A deeper depths between 20 and 100 cms. the values were slightly higher with differences ranging between 0.2°C at 20 cms. and 0.6°C at 100 cms. The extreme minimum soil temperatures were slightly higher than last January at 2 cms. depth and at depths between 50 and 100 cms. with differences ranging between 0.2°C and 0.5°C. At depths between 5 and 20 cms the values were lower than last January with differences ranging between 0.2°C and 0.9°C.

The daily mean Pan evaporation was 1.04 mm. less than the corresponding value of January 1968. The total actual duration of bright sunshine was 44.1 hours less than the corresponding value of January 1968.

KHARGA --- JANUARY 1969

This month was slightly cooler than normal and almost rainless. The month was characterized by four cold waves during the periods (4th - 10th), (14th-15th), (19th-20th) and (22nd-31st). The last cold wave was markedly long and yielded the lowest maximum air temperature for the month (15.8°C) on the 29th. Four short warm spells occurred on the 2nd., 12th, 17th and 21st. The minimum air temperature at 5 cms above ground fell below 0°C on 9 days. The values of the minimum temperatures on these days are given in the following table:

The extreme maximum soil temperatures were lower than the corresponding values of last January at all depths between 2 and 100 cms and the differences ranged between 2.2°C at 10 cms. and 0.2°C at 100 cms. The extreme minimum soil temperatures were higher than the corresponding values of last January at shallow depths between 2 and 20 cms. with differences ranging between 1.3°C at 2 cms. and 0.6°C at 20 cms. At deeper depths between 50 and 100 cms the values were slightly lower than last January with differences ranging between 0.5°C and 0.1°C.

The daily mean Pan evaporation was 1.14 mm. less than the corresponding value of January 1968. The total actual duration of bright sunshine was 4.3 hours more than the corresponding value of January 1968.

Table C 1.—AIR TEMPERATURE AT 1½ METRES ABOVE GROUND

JANUARY — 1969

		Air Te	mperati	ire (°C)		Mean Duration in hours of daily air temperature above the following values											
STATION	Mean Max.	Mean Min.	Mean of the day	Night time mean	Day time mean	— 5 °C	0°C	5°C	10°C	15°C	20°C	25° C	30°C	35°C	40°C	45	
						1			1								
El Kasr	17.0	8.0	12.0	10.3	13.9	24.0	24.0	24.0	16.1	3.9	0.5	0.0	0.0	0.0	0.0	0	
Tobrir	18.1	7.3	11.9	9.9	14.0	24.0	24.0	23.6	16.0	5.6	0.4	0.0	0.0	0.0	0.0	0	
Bahtim	17.8	6.0	11.4	€.1	13.7	24.0	24.0	23.1	14.3	4.5	0.3	0.0	0.0	0.0	0.0	0	
Kharga	20.7	3.3	12.1	8.8	15.5	24.0	24.0	20.8	14.1	7.8	1.7	0.0	0.0	0.0	0.0	C	

Table C 2.— ABSOLUTE VALUES OF AIR TEMPERATURE AT 1½ METRES ABOVE GROUND, ABSOLUTE MINIMUM AIR TEMPERATURE AT 5cms ABOVE GROUND OVER DIFFERENT FIELDS.

JANUARY — 1969

	Max.	Temp. at	t 1} metre	3 (°C)	Min.	Temp. at	ll metre	s (°C)	Min. Temp. at 5 cms. ahove (°(
STATION	High	hest	Lov	west	High	hest	Lov	vest	Dry	soil	Gr	ass			
	Value	Date	Value	Date	Value	Date	Value	Date	Value	Date	Value	Da			
El Kost	23.3	16	12.1	28	12.2	12	4.8	5	3.0	10		-			
Tabrir	24.6	17	11.8	28	12.4	12	3.2	6	1.6	10	-	-			
Bahtim	24.5	17	12.2	28	11.1	21	1.3	10	-9.5	15		_			
Kharga	25.2	17	15.8	29	8.3	21	0.4	10	-1.6	10		-			

Table C 3.—(SOLAR +SKY) RADIATION, DURATION OF BRIGHT SUNSHINE, RELATIVE HUMIDITY, VAPOUR PRESSURE AT 1½ METRES ABOVE GROUND, EVAPORATION & RAINFALL

JANUARY --- 1969

	tadio cm°	Darasio Sunsidi			Re	lative	Hun	aidity		Vapo	ur pre	:8sure	(mm/s)		•	ration ms)	Rair	nfall (m	ims)
STATION	(Sofer : Sky) I Hen em. Ca.	Total Actual nearthly	mentaly Testing	6/ /0	Mean of day	1500 U.T.	Lowest	Date	Mean of day	1200 U.T.	Lighest	Date	Lowest	Date	Piche	Pan class A	Total Amou- nt Menthly	Max. Fall in one day	Date
And the second s								(1			!			:	1		
El Kasr .	219 6	190.7	;20 .S _.	á9 -	74	60	32	5	7 s	8.1	11.5	12	1 0	5	4.8	3.83	98.6	21.9	2
Talarir	292.0	151.2	(2.) D	56	69	51	25	17	7 2	7.2	11.9	2	1.1	6	4.6	3 53	13.7	7.4	1
Bahtim .	252.5	172.9	324.6	53	69	51	30	6	6.9	7.2	11.5	1	3.5	6	4.1	3.16	13.5	6.2	1
Kharga .	323.6	298.9	334.6	89	48	33	16	17	4.9	5.5	8.0	13	3.1	9	7.3	5.58	Tr.	Tr.	18.

Table C 4.—EXTREME SOIL TEMPERATURE AT DIFFERENT DEPTHS
IN DIFFERENT FIELDS (cms)

JANUARY-1969

hest (H) rest (L)	Ex			-		•	•	Extreme soil temperature (°C) in grass field at different depths (cms.)								
High Low	2	5	10	20	50	100	200	300	2	5	10	20	50	100	200	300
H	20.6 4.9									_	_	_	-	-		_
H L	26.5 3.3								- -	-	_	_	_	_	-	_
H L	25.9 4.3								-	-	<u>-</u>	_		=	_	_
H L	28.8 4.1									-	_ _	_	_	_	_	_
	Highest H T H T H Lowest	H 20.6 L 4.9 H 26.5 L 3.3 H 25.9 L 4.3 H 28.8	H 20.6 18.2 L 4.9 6.0 H 26.5 24.4 L 3.3 5.0 H 25.9 21.6 L 4.3 6.5 H 28.8 24.2	at difference of the control of the	at different of the part of th	at different depths 2 5 10 20 50 H 20.6 18.2 16.7 14.4 14.5 L 4.9 6.0 7.4 9.4 11.8 H 26.5 24.4 20.6 17.9 17.3 L 3.3 5.0 7.6 10.6 13.1 H 25.9 21.6 19.2 18.6 19.9 L 4.3 6.5 10.3 14.0 17.2 H 28.8 24.2 20.5 19.2 20.8	at different depths (cms.) 2 5 10 20 50 100 H 20.6 18.2 16.7 14.4 14.5 17.0 L 4.9 6.0 7.4 9.4 11.8 15.2 H 26.5 24.4 20.6 17.9 17.3 18.7 L 3.3 5.0 7.6 10.6 13.1 16.2 H 25.9 21.6 19.2 18.6 19.9 21.7 L 4.3 6.5 10.3 14.0 17.2 19.6 H 28.8 24.2 20.5 19.2 20.8 23.6	at different depths (cms.) 2 5 10 20 50 100 200 H 20.6 18.2 16.7 14.4 14.5 17.0 23.4 L 4.9 6.0 7.4 9.4 11.8 15.2 23.0 H 26.5 24.4 20.6 17.9 17.3 18.7 21.5 L 3.3 5.0 7.6 10.6 13.1 16.2 19.4 H 25.9 21.6 19.2 18.6 19.9 21.7 24.2 L 4.3 6.5 10.3 14.0 17.2 19.6 22.5 H 28.8 24.2 20.5 19.2 20.8 23.6 27.2	H 20.6 18.2 16.7 14.4 14.5 17.0 23.4 — H 26.5 24.4 20.6 17.9 17.3 18.7 21.5 23.2 H 25.9 21.6 19.2 18.6 19.9 21.7 24.2 25.1 H 28.8 24.2 20.5 19.2 20.8 23.6 27 2 28.6	at different depths (cms.) 2 5 10 20 50 100 200 300 2 H 20.6 18.2 16.7 14.4 14.5 17.0 23.4 — — L 4.9 6.0 7.4 9.4 11.8 15.2 23.0 — H 26.5 24.4 20.6 17.9 17.3 18.7 21.5 23.2 — L 3.3 5.0 7.6 10.6 13.1 16.2 19.4 21.6 — H 25.9 21.6 19.2 18.6 19.9 21.7 24.2 25.1 — L 4.3 6.5 10.3 14.0 17.2 19.6 22.5 24.1 — H 28.8 24.2 20.5 19.2 20.8 23.6 27.2 28.6 —	H 20.6 18.2 16.7 14.4 14.5 17.0 23.4 — — H 20.6 18.2 16.7 14.4 14.5 17.0 23.4 — — L 4.9 6.0 7.4 9.4 11.8 15.2 23.0 — H 26.5 24.4 20.6 17.9 17.3 18.7 21.5 23.2 — L 3.3 5.0 7.6 10.6 13.1 16.2 19.4 21.6 — H 25.9 21.6 19.2 18.6 19.9 21.7 24.2 25.1 — L 4.3 6.5 10.3 14.0 17.2 19.6 22.5 24.1 — H 28.8 24.2 20.5 19.2 20.8 23.6 27.2 28.6 —	at different depths (cms.) at different depths (cms.) at different depths (cms.) B 2 5 10 20 50 100 200 300 2 5 10 H 20.6 18.2 16.7 14.4 14.5 17.0 23.4 — — — — L 4.9 6.0 7.4 9.4 11.8 15.2 23.0 — — — H 26.5 24.4 20.6 17.9 17.3 18.7 21.5 23.2 — — L 3.3 5.0 7.6 10.6 13.1 16.2 19.4 21.6 — — H 25.9 21.6 19.2 18.6 19.9 21.7 24.2 25.1 — — L 4.3 6.5 10.3 14.0 17.2 19.6 22.5 24.1 — — H 28.8 24.2 20.5 19.2 20.8 23.6 27 28.6 — —	at different depths (cms.) at different depths (cms.) at different depths (cms.) at different depths (cms.) 2 5 10 20 50 100 200 300 2 5 10 20 H 20.6 18.2 16.7 14.4 14.5 17.0 23.4 - - - - - L 4.9 6.0 7.4 9.4 11.8 15.2 23.0 - - - - H 26.5 24.4 20.6 17.9 17.3 18.7 21.5 23.2 - - - L 3.3 5.0 7.6 10.6 13.1 16.2 19.4 21.6 - - - H 25.9 21.6 19.2 18.6 19.9 21.7 24.2 25.1 - - - L 4.3 6.5 10.3 14.0 17.2 19.6 22.5 24.1 - - - H 28.8 24.2 20.5 19.2 20.8 23.6 27.2 28.6 - - - -	at different depths (cms.) at different depth 20 5 10 20 50 100 200 300 2 5 10 20 50 H 20.6 18.2 16.7 14.4 14.5 17.0 23.4 -	at different depths (cms.) at different depths (cms.) at different depths (cms.) 2	at different depths (cms.) at different depths (cms.) 2

Table C 5.—SURFACE WIND

JANUARY-1969

		l Speed m t ll metr			Days w		Max. Gust (knots at 10 metres					
STATION	Mean of the time time day mean mean			≥10 knots	≥15 knots	≥20 konts	≥25 knots	≥ 30 knots	≥35 knots	≥40 knots	value	Date
			[1]		1	
l Kasr	2.7	2.6	2.9	-	-	_	-	_	-	-	-	-
ahrir	2.7	2.1	3.3	28	18	9	3	0	0	0	39	21
ahtim	2.7	2.1	3.4	27	17	. 8	3	0	0	0	35	20.21
harga		1.5	3.1	25	14	4	ı	0	0	0	34	23
				}		}				}	l	

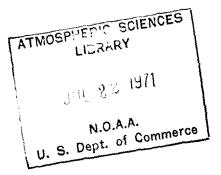
PRINTED IN U.A.R. BY THE GENERAL ORGANIZATION FOR GOVT. PRINTING OFFICES. CAIRO

ALY SULTAN ALY

UNDER-SECRETARY OF STATE

Chairman of the Board of Directors

8823-1969- 150



MONTHLY WEATHER REPORT

VOLUME 12

NUMBER 2

FEBRUARY, 1969

U.D.C. 551, 506.1 (62)

METEOROLOGICAL DEPARTMENT
C A I R O

PUBLICATIONS OF THE METEOROLOGICAL DEPARTMENT OF THE UNITED ARAB REPUBLIC—CAIRO

In fulfilment of its duties as the National Meteorological service for the U.A.R., the Meteorological Department issues several reports and publications on weather, climate and agrometeorology. The principal publications are described on this page.

Orders for publications should be adressed to:
"The Director General, Meteorological Department, Kubri-el-Qubbeh—CAIRO"

THE DAILY WEATHER REPORT

This report is printed daily in the Meteorological Department. It contains surface and upper air observations carried by the relevant networks of the Republic and made at the four main synoptic hours of observations (00, 06, 12 and 18 U.T.); as well as ship observations over the Eastern Mediterranean and north Red Sea made at the same times.

It also contains two surface synoptic charts at 00 and 12 U.T. and two upper air charts for the standard isobaric surfaces 700 & 500 mbs. at both 00 and 12 U.T. In compliance with resolution 8 (EC-XIII) of WMO, foreign upper air data included in Cairo Subregional Broadcast are also given in this report.

As from January 1968, the daily weather report contents are pressed into a rather less but representative selection of synoptic weather observations and charts.

THE MONTHLY WEATHER REPORT

First issued in 1909, the Monthly Weather Report served to give a brief summary of the weather conditions that prevailed over Egypt during the month, with a table showing the mean values for few meteorological elements and their deviations from the normal values. From 1954 to 1957 this report was in a rapid state of development and extension resulting into a voluminous report on January 1958 giving surface, upper air, and agro-meteorological data for U.A.R.

THE AGRO-METEOROLOGICAL ABRIDGED MONTHLY REPORT

Gives a review of weather experienced in the agro-meteorological stations of the U.A.R. as well as monthly values of certain elements.

THE ANNUAL REPORT

This report gives annual values and statistics for the various meteorological elements, together with a summary of the weather conditions that prevailed during all months of the year.

CLIMATOLOGICAL NORMALS FOR EGYPT

The normals, long averages and statistical data are given in one edition for stations in Egypt from the date of opening of each station up to 1945. A new voluminous edition was issued in March 1968 which brings normals and mean values up till 1960.

MONTHLY WEATHER REPORT

VOLUME 12 NUMBER 2

FEBRUARY, 1969

U.D.C. 551. 506.1 (62)

METEOROLOGICAL DEPARTMENT
C A I R O

CONTENTS

	PAGE
General Summary of Weather Conditions	1-2
SURFACE DATA	
Table A1.—Monthly values of the Atmospheric Pressure, Air Temperature, Relative Humidity, Bright Sunshine Duration and Piche Evaporation	3
. A2.—Maximum and Minimum Air Temperatures	4
" A 3.—Sky Cover and Rainfall	5
,, A4.—Number of Days of Occurrence of Miscellaneous Weather Phenomena	6
, A5.—Number in Hours of Occurrences of Concurrent Surface Wind Speed and Direction Recorded Within Specified Ranges	7,8
UPPER AIR DATA	
Table B1.—Monthly Means and Monthly Absolute Higher & Lower Values of Altitude, air Temperature & Dew point at Standard and Selected Pressure Surfaces	9,10
B2.—Mean and Extreme values of The Freezing Level and The Tropopause; The Highest Wind Speed in The Upper Air	11
" B3.—Number of Occurrences of Wind Direction Within Specified Ranges and The Mean Scalar Wind Speed at the Standard and Selected Pressure Surfaces	12-14
AGRO-METEOROLOGICAL DATA	
Reviews of Agro-meteorological stations	15-16
Table C1.—Air Temperature at 1½ Metres Above Ground	17
" C2.—Aboslute Values of Air Temperature at 1½ Metres Above Ground, Absolute Minimum Air Temperature at 5 Cms Above Ground Over Different Fields	17
,, C3.—(Solar + Sky) Radiation, Duration of Bright Sunshine, Relative Humidity and Vapour Pressure at 1½ Metres Above Ground, Evaporation and Rainfall	17
,, C4.—Extreme Soil Temperature at Different Depths in Different Fields	18
" C5.—Surface wind	18

GENERAL SUMMARY OF WEATHER CONDITIONS

FEBRUARY 1969

Much changeable, generally mild in the north and warm in the south. Deficient rain.

GENERAL DESCRIPTION OF WEATHER

Weather during this month was much chaneable in temperature. The month was characerized by four pronounced warm spells round he periods: (2-6), (10-11), (14-17) & (22-28). The third and fourth warm spells were the most pronounced. During the rest periods of the month, weather was rather cold in the northern parts, and mild in the middle and outhern parts.

Light rain fell over the Mediterranean disrict during the period (7th-9th) and round he 22nd. It extended southwards to few cattered places on the 22nd only.

Rising sand blew over scattered places by he passage of cold fronts round the 7th, 12th, 7th & 26th. Early morning mist and fog developed during several days over scattered places in Delta, Canal, Cairo Areas and in the north parts of Upper Egypt district.

PRESSURE DISTRIBUTION

The most important pressure systems over he synoptic surface maps during this month were:

- The Siberian anticyclone and its outhwest extension to East Mediterranean.
- The subtropical high pressure belt over he Atlantic and North Africa.

- Deep low pressure systems through North Urasia.
- Secondary depressions through the Mediterranean and its vicinities.

During this month, five secondary Mediterranean depressions were distinguished, four of which passed through East Mediterranean.

The first depression originated south of Tunisia on the 2nd, and moved northeastwards reaching Italy on the 4th, then it took an eastward track and passed through East Mediterranean on the 7th.

The second depression developed over Italy on the 8th and moved eastawrds traversing Asia Minor and East Mediterranean on the 12th.

The third depression originated on the 14th over the gulf of Genewa, and was associated with a secondary depression near the gulf of Serte. This system proceeded eastwards and passed through Asia Minor and East Mediterranean on the 17th.

The fourth depression appeared over the gulf of Genewa on the 20th and proceeded catwards while filling, reaching Asia Minor on the 23rd where it filled up on the 24th. Meanwhile a depression appeared over Italy and was associated with a secondary near the gulf of Cyranica. This system proceeded castwards and passed through Asia Minor and north of U.A.R. on the 26th.

After the passage of the above mentioned depressions through East Mediterranean, subtropical high pressure belt extended over NE Africa and East Mediterranean, and amalgamated with the extension of the Siberian anticyclonic SW ridge.

The transits of the above mentioned four depressions through East Mediterranean, and the subsequent formation of high pressure, caused four pronounced oscillations in the barometric pressure over U.A.R. with maxima round the 2nd, 9nd, 13th, 20th and minima round the 7th, 12th, 17th, 26th.

The outstanding pressure systems over the synoptic upper air charts were:

- Two deep upper lows over North Russia and North Atlantic.
- Secondary upper troughs or lows through the middle latitudes, passing through East Mediterranean and north of U.A.R. on the 8th, 13th, 19th, 23rd and 28th.

SURFACE WIND

The prevailing winds most days of this month were generally light to moderate and blew from directions between NE & NW. Winds became fresh to strong in association with the transits of Mediterranean troughs through East Mediterranean and changed to SWly mainly in north of the Republic. On the other hand, calms were frequent most of night and early morning interavals in scattered land localities.

Gales were reported at Sidi Barrani on the 11th.

Cairo, 22 | 2 | 1971

TEMPERATURE

Maximum air temperature showed larg variability during this month. Its value ranged generally between 18°C, 25°C in th northern parts, between 20°C, 30°C in th middle parts, and between 25°C, 33°C in th southern parts.

The absolute maximum air temperatur for the month was 39.0°C recorded at Dakhl on the 26th.

Minimum air temperature fluctuation were rather analogous to maximum temperature fluctuations.

Minimum air temperature values range generally between 7°C, 15°C in the norther and southern parts, and between 3°C, 13° in the middle parts.

The absolute minimum air temperature for the month was — 1.2 °C recorded at Farafron the 2nd.

PRECIPITATION

This month was characterized by pronounce dryness and the monthly rainfall was rema kably below normal in general.

Light rain was confined to the Mediterral can district during the period (7th - 9th) ar round the 22nd, during which it extended few land localities.

The highest daily rainfall was 4.0 mms. Damietta on the 7th and at Fayoum on the 22nd.

The highest monthly rainfall was 4.3 mm at Balteam.

M. F. TAHA
Under Secretary of State
Director General
Meteorological Department

Table A 1. — MONTHLY VALUES OF THE ATMOSPHERIC PRESSURE, AIR TEMPERATURE, RELATIVE HUMIDITY, BRIGHT SUNSHINE DURATION & PICHE EVAPORATION.

FEBRUARY — 1969

		spheric e (mbs)				Air 7	Cemperatu	re °C				Rels	stive	Reio	ht Sunshir		â
		S.L.	Max	imum	Min	imum		Dry	Bulb	Wet	Bulh		lity %		tion (Hou		m) uo
TATION	Mean	D.F. Normal or Average	(A) Mean	D.F. Normal or Average	(B) Mean	D.F. Normal or Average	$\frac{A+B}{2}$	Mean	D.F. Normal or Average	Mean	D.F. Normal or Average	Mean	D.F. Normal or Average	Total Actual	Total Possihle	%	Piche Evaporation (mms)
Sallum	1015.8 1016.3 1016.8 1016.4	- 1.5 - 0.8 - 0.4 - 0.5	21.2 20.0 20.6 19.6	+ 1.5 + 1.2 + 1.4 + 1.0	11.6 9.6 10.0 12.8	+ 1.9 + 1.2 + 0.5 + 0.8	16.4 14.8 15.3 16.2	15.7 14.4 14.8 15.7	$\begin{array}{c} + 1.1 \\ + 1.0 \\ + 0.6 \\ + 0.9 \end{array}$	11.1 11.7 11.8 12.9	+ 0.6 + 0.9 + 0.6 + 0.9	54 71 68 70	0 + 8 0 + 1	219.6 225.1	310.5 310.5	- 71 72 -	7.1 6.1 4.0 5.4
anta	1016.8	0.5	22.4	+ 1.5	8.5	+ 1.9	15.4	14.6	+ 1.8	11.4	+ 1.5	65	1	213.8	310.9	69	3.
airo (A)	1016.5	- 0.9	21.2	+ 0.6	10.1	+ 0 7	15.6	17.2	+ 2.4	11.6	+ 1.1	46	_ 9		_	_	12.
Tayoum (A) Iinya (A) Issyout (A) Luxor (A)	1016.2 1016.0 1015.8 1014.7	- 1.5 - 1.2 - 0.3 - 0.9	25.6 25.2 26.5 29.5 29.8	+ 3.6 + 2.8 + 3.9 + 4.3 + 4.0	8.8 6.8 9.4 8.8 12.1	$\begin{vmatrix} +1.4 \\ +1.6 \\ +1.9 \\ +2.1 \\ +2.9 \end{vmatrix}$	17.2 16.0 18.0 19.2 21.4	16.7 15.4 17.4 18.6 20.5	+ 2.4 + 2.1 + 2.3 + 2.7 + 3.0	12.1 10.6 11.0 11.8 10.9	$ \begin{array}{r} + 2.3 \\ + 1.7 \\ + 1.8 \\ + 1.8 \\ + 1.9 \end{array} $	55 51 40 39 22	+ 3 + 2 - 1 - 3 - 2	269.3	312·1 — — —	86 - -	4.4 6.0 12.1 7.0 16.1
iwa	1015.2 1016.4 	- 2.5 - 0 7 - 0.9 - 1.2	25.1 26.1 26.5 28.5 28.3	+ 3.4 + 3.9 + 4.1 + 4.8 + 3.7	8.1 9.1 6.9 6.8 9.1	+ 2.4 + 2.8 + 1.5 + 1.1 + 2.0	16.6 17.6 16.8 17.6 18.6	16.3 17.3 	$\begin{array}{c c} + 2.4 \\ + 3.6 \\ \hline + 3.7 \\ + 3.6 \end{array}$	9.6 10.6 9.6 9.8	$ \begin{array}{c c} +1.0 \\ +2.2 \\ \hline +2.4 \\ +1.1 \end{array} $	36 38 29 28	- 8 - 6 - 3 - 10		316.9	92	9. 8. 12. 10. 13.
or	1015. 3 1015.8	- 0.3 + 0.1	23.1 23.4	- + 1.9 + 0.4	11.2 14.8	+ 1.3 + 0.5	17.2 19.1	17.7 19.3	+ 1.2 + 1.0	13.2 14.3	+ 2.0 + 1.9	57 55	+ 9 +10	_ _ _	_ 	_ 	11. 12.

Table A2. - MAXIMUM AND MINIMUM AIR TEMPERATURES

FEBRUARY — 1969

			Mas	timum T	emperati	ure °C				Grass M Temp				Minimu	т Те т р	erature	°C		
Station	Ŧ.	₂	13 E		No. o	f Days	with M	[ax-Ten	ıp.	uu	From Normal	est	ų į	tsə	2	No	of Da		1
	Highert	Date	Lowest	Date	>25	>30	>35	>40	> 45	Mean	D. From	Highest	Date	Lowest	 	<10	<5	<0	<-5
Sallum	32.4 31.8 29.3 27.7	15 15 15 26	16.2 16.4 17.2 17.0	7 12 7 14	5 1 2 2	2 1 0 0	0 0 0 0	0 0 0 0	0 0 0 0	11.4 8.2 12.2		19.1 14.2 14.5 15.8	15 16 16,17 26 —	6.9 5.2 5.0 9.6	2 1 1 8	7 16 12 1	0 0 0 -	0 0 0 0 -	0 0 0 -
Tanta	31.0	25	19.0	14	6	1	0	0	0	-		13.5	16,27	3.6	11	18	5	0	0
Cairo (A)	32.4	26	17.8	ī	8	4	o	o	0	_		16.7	26	6.2	5	12	0	0	0
Fayoum	33.3 33.5 37.3 36.4 37.4	26 26 26 27,28 23	20.3 19.6 18.3 22.4 21.5	8 8 8 8	14 13 16 25 24	5 5 8 12 14	0 0 3 3 5	0 0 0 0	0 0 0 0	6.0 4.8 7.1 5.6		14.5 14.2 17.8 13.8 19.2	26 17 25 27 28	3.8 1.2 4.4 2.4 6.0	3 4 2 1 1	18 19 18 16 7	5 10 1 5 0	0 0 0 0	0 0 0 0
Siwa	37.2	25 26 26 26 27	17.9 18.7 18.4 19.2 19.8	8 8 1 8 8	16 14 15 18 18	5 6 8 10 10	0 1 2 5 4	0 0 0 0 0	0 0 0 0	7.6 7.2 9.4 — 7.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17.7 20.5 16.6 13.6 16.2	18	-0.1 2.0 -1.2 0.6 3.0	2,3	18 16 20 20 17	9 3 13 12 2	1 0 1 0 0	0 0 0
Tor	27.7 28.4	27 27	19.8 20.6	8	4 6	0 ,	0 0	0 0	0 0	12.7		16.6 18.4		7.5 12.5		111	0	0	

Table A 3.-SKY COVER AND RAINFALL

FEBRUARY — 1969

		Mean S	sky Cover	Oct.					Rai	nfall mn	18.					
Station	00	06	12	18	Daily	Total	D. From	Max. in one		N	Tumber	of Day	s with	Amount	of Ra	in
	U.T.	U.T.	U.T.	U.T.	Mean	Amount	Normal	Amount	Date	<0.1	≥0.1	≥1.0	≥5.0	≥10	≥25	≥50
Sallum	4.8 3.4 3.5 —	4.1 2.4 4.8 2.4	4.2 4.1 5.1 3.2	3.9 4.2 3.4 —	4.2 2.8 4.0 —	0.4 2.8 1.4 1.0	-11.1 -14.9 -29.9 -11.0	0.2 2.4 1.0 0.9	21,26 7 7 7 —	0 0 0 0 -	2 2 2 2 -	0 1 1 0 -	0 0 0 -	0 0 0 0	0 0 0 0 -	0 0 0 0
Tanta	1.5	2.7	4.1	1.6	2.3	0.1	- 7.8	0.1	7	0	1	0	0	0	0	0
Cairo (A)	2.0	3.9	4.1	2.0	3.0	0.4	- 4.3	0.4	22	1	1	0	0	0	0	0
Fayoum (A) Minya (A) Assyout (A) Luxor (A) Aswan (A)	0.8 0.3 0.6 0.9	2.5 2.0 0.6 1.4 0.9	3.3 1.8 1.0 1.0 1.1	2.9 2.2 0.7 1.4 0.8	1.7 0.7 1.1 0.9	4.0 2.4 0.0 tr. 0.0	+ 2.6 + 1.2 - 0.3 - 0.2	4.0 2.4 0.0 tr. 0.0	22 22 — 23 —	0 0 0 1 0	1 1 0 0 0	1 1 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0
Siwa	1.5 1.4 - 0.0 0.3	2.0 1.8 0.8 0.1 0.9	3.0 2.0 1.6 0.3 0.9	1.7 2.0 1.0 0.2 0.8	2.1 1.7 	0.8 1.8 0.0 0.0 0.0	- 1.7 + 0.6 - tr. - 0.3 - 0.3	0.8 1.8 0.0 0.0 0.0	22 22 — —	0 0 0 0	1 1 0 0 0	0 1 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0
Tor	1.2 0.5	2.0 1.5	1.7	1.4	1.6	0.0 tr.	- tr. + tr.	0.0 tr.		0	0 0	0 0	- 0 0	0 0	0 0	0 0

Table A 4. - DAYS OF OCCURRENCE OF MISCELLANEOUS WEATHER PHENOMENA.

FEBRUARY - 1969

Station	Rain	Precipi Snow	Ice.	Hail	Frost	Thunderstorm	Mist Vis ≥1000 metres	Fog Vis <1000 Metres	Haze Vis >1000 Metres	Thick Haze Vis <1000 Metras	Dust or Sandrising Vis ≥1000 Metres	Dust or Sandstorm Vis <1000 Metres	Gale	Clear Sky	Cloudy Sky
Sallum (A) Mersa Matruh (A) Alexandria (A) Port Said (A) Al Arish (A) Ghazza (A)	2 2 2 2 -	e 0 0 0	0 0 0	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0	0 2 3 0	0 0 5 0 	0 1 2 0	0 0 0 0	4 6 3 1 —	0 2 1 1	0 0 0	2 7 3 —	* 5 1
Tanta	1	0	0	0	0	0	5 4	0	0 11	0	0	0	0	14 7	0
Fayoum	1 1 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	3 4 0 0	1 1 0 0 0	0 3 0 2 0	0 0 0 0	0 1 0 0	0 0 0 0 0	0 0 0 0	19 25 22 26	0 0 0 0
Siwa Bahariya Farafra Dakhla Kharga	1 1 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0	0 0 0 0	0 0	0 0 0 0	1 0 3 2 1	0 0 0 0	3 0 0 5 7	0 0 0 0 0	0 0 0 0	16 18 ——————————————————————————————————	1 0 - 0 6
Tor	0 0	0 0	0 0	0 0	0 0	 0 0	1 0	0 0	0 0	0 0	11 1	0 0	0 0	18 23	0 0

6.

Table A 5.—NUMBER IN HOURS OF OCCURRENCES OF CONCURRENT SURFACE WIND SPEED AND DIRECTION RECORDED WITHIN SPECIFIED RANGES FEBRUARY — 1969

		₆	urs)			Num	ber i			occur s of d					ng fr	om t	he
St at ion	Calm (hours)	Variable (hours)	Unrecorded (hours)	Wind speed in knots	1	5 015 / 4 044	1	1	1/	135 / 164	1	1	225 / 254	1	285 / 314	315 / 344	Ĭ,
Sallum	5	2	8	1-10 11-27 28-47 ≥48 All speeds	35 18 0 0 53	26 0 0 0 26	48 7 0 0 55	66 0 0 0 66	47 0 0 0 47	11 0 0 0	24 6 0 0 30	28 22 0 0 50	34 43 0 0 77	55 34 1 0 90	43 38 0 0 81	50 21 0 0 71	467 189 1 0 657
Iersa Matruh . (A)	12	0	1	1-10 11-27 28-47 ≥48 All speeds	20 1 0 0 21	13 2 0 0 15	10 4 0 0 14	30 27 0 0 57	41 45 0 0 86	51 27 0 0 78	30 17 11 0 58	25 39 9 0 73	20 32 0 0 52	27 34 6 0 67	17 47 0 0 64	21 53 0 0 74	305 328 26 0 659
lexandria (A)	0	2	190	1-10 11-27 28-47 ≥48 All speeds	13 0 0 0 13	58 19 0 0 77	53 6 0 0 59	44 3 0 0 47	35 3 0 0 38	22 5 0 0 27	17 1 0 0 18	25 2 4 0 27	5 9 0 0 14	22 21 0 0 43	49 11 0 0 60	46 11 0 0 57	389 91 0 0 480
ort Said (A)	9	0	2	1-10 11-27 28-47 ≥48 Aıl speeds	35 0 0 0 35	81 15 0 0 96	46 40 0 0 86	20 35 0 0 55	22 15 0 0 37	16 10 0 0 26	9 32 0 0 41	13 19 0 0 32	40 37 3 0 80	15 25 0 0 40	27 33 0 0 69	61 12 0 0 73	385 273 3 0 661
inta	57	0	0	1-10 11-27 28-47 ≥48 All speeds	50 2 0 0 52	95 0 0 0 95	45 0 0 0 45	56 2 0 0 58	19 0 0 0 19	28 0 0 0 28	52 1 0 0 53	6 0 0	47 2 0 0 49	49 0 0 0 49	55 0 0 0 55	50 0 0 0 50	602 13 0 0 615
iro (A)	56	o	2	1-10 11-27 28-47 ≥48 All speeds	43 4 0 0 47	55 12 0 0 67	54 22 0 0 76	73 17 0 0 90	35 0 0 0 35	16 5 0 0 21	49 7 0	30 0 0	15 0 0	17 17 0 0 34	34 9 0 0 43	44 2 0 0 46	425 182 7 0 614
youm	23	1	0	1-10 11-27 28-47 ≥48 All speeds	158 1 0 0 159	152 2 0 0 154	32 0 0 0 32	22 0 0 0 22	16 0 0 0	45 0 0 0 45	0 0	7 0 0	2 0 0	21 0 0 0 21	24 6 0 0 24	25 0 0 0 25	634 14 0 0 648
'nya (A)	35	6	3	11-27 28-47 ≥48	217 55 0 0 272	20 0 0 0 0	4 0 0 0 4	1 0 0 0	0 0	1 0 0	13 0	0 0	11 2 0 0 13	0 0	27 2 0 0 29	93 3 0 96	552 76 0 0 628

Table A 5 (contd)—NUMBER IN HOURS OF OCCURRENCE OF CONCURRENT SURFACE WIND SPEED AND DIRECTION RECORDED WITHIN SPECIFIED RANGES

FEBRUARY — 1969

Station	calm (hours)	Variable (hours)	Unrecorded (hours)	Wind speed in knots	Number in hours of occurrences of wind blowing from the ranges of directions indicated 345 015 045 075 105 135 165 195 225 255 285 315 141 044 074 104 134 164 194 224 254 284 314 344
(A)	13	į	13	1-10 11-27 28-47 >48 All speeds	19 7 19 32 34 21 21 3 7 151 110 73 49 15 0 0 1 5 10 31 10 4 4 30 38 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Luxor (A)	6	0	υ	1-19 11-27 28-47 ≥48 All speeds	48 41 42 58 19 35 95 18 62 86 65 86 65 0 0 0 0 0 0 1 0 0 7 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aswan (A)	0	3	0	1-10 11-27 28-47 ≥48 All speeds	222 43 7 9 14 5 23 6 5 11 14 .42 56 38 7 0 0 3 0 2 0 0 0 0 1 117 10 0
อเหล	14	9	0	1 10 11-27 28-47 ≥48 All speeds	12 22 19 74 120 63 47 32 38 56 32 21 5 3 3 0 0 22 11 11 6 9 11 15 22 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 25 19 74 142 74 58 38 47 67 47 43 6
Pakhla	. 21	2	1	1-10 11-27 28-47 >48 All speeds	21 39 32 58 40 36 90 23 32 56 77 95 8 11 3 1 0 0 0 0 1 1 2 1 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Kharga	. 6	3	0	1 10 11-27 28-47 >48 All врееds	87 F5 25 8 20 14 :8 22 19 31 34 113 127 10 0 0 0 0 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 214 65 25 8 20 14 46 24 19 31 34 163
Hurghada	. 20	2	23	1-10 11-27 28: 47 ≥48 All speeds	10 19 9 8 27 26 19 10 4 13 37 78 118 19 0 0 24 22 8 0 0 0 28 112 12 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 140 38 9 8 51 48 27 10 4 13 65 214
Quseír , , , , , , ,		4 0	2	1-10 11-27 28-47 ≥48 All speeds	37 25 9 11 45 30 31 18 20 107 91 36 90 0 0 0 1 0 0 0 0 2 21 87 2 0 0 0 0 0 0 0 0 0 0 0 129 25 9 11 46 30 31 18 20 109 112 126

Table B 1. UPPER AIR CLIMATOLOGICAL DATA FEBRUARY 1969

Station	Pressure Surface	Ale	titude of Pro	essure Surfa	ce (gpm)		Tempe	erature (°C)		Dew P	oint (°C)
Sta	(Millihar)	N	Mean	Highest	Lowest	N	Mesn	Highest	Lowest	N	Mean
Merse Matruh 6000 U.T.	Surface	27 27 27 26 26 26 25 23 22 20 19 14 9 6 6 5 3 3 2	1013m.1 135 1497 3077 4297 5690 7325 9365 10515 11920 13713 16209 18355 19278 20414 21781 23582 26086	1022m b. 209 1593 3135 4363 6774 7433 9149 10655 12072 13838 16332 18480 19410 20540 21926 23720 26096	1000m.b. 28 1430 3024 4195 5614 7227 9199 10445 11820 13619 16114 18240 19197 20313 21713 23505 26077	27 27 27 24 25 25 23 22 20 19 14 9 6 6 5 3 3 2	12.4 13.5 8 5 0.8 -7.0 -17.2 -29.1 -45.2 -54.4 -60.8 -59.7 -66.0 -67.4 -66.9 -65.2 -62.1 -58.8 -55.2	20.4 21.3 20.0 5.6 4.5 -14.1 -26.1 -39.9 -46.3 -51.0 -55.7 -59.6 -61.7 -61.3 -60.6 -56.6 -54.5	6.8 9.3 -2.2 -8.6 -11.7 -20.9 -34.0 -49.2 -59.0 -67.6 -62.9 -72.0 -71.3 -69.9 -69.0 -64.9 -60.3 -55.8	27 27 27 24 25 24 23 19 16 4 ——————————————————————————————————	9.0 8.5 -3.2 -11.3 -16.8 -25.9 -38.6 -53.4 -62.2 -64.0
Helwan 0000 U.T.	Surface	27 27 27 27 27 27 27 26 26 26 26 26 22 18 15 14 13	1000m), 143 1509 3103 4329 5728 7367 9362 10553 1197) 13790 16273 1839 + 19260 20442 21820 23611 26177	1008m.b. 207 1567 3168 4397 5808 7467 9511 10732 12166 14006 16463 18600 19545 20657 22019 23819 26446	991m.b. 63 1441 3016 4237 5641 7296 9251 10417 11797 13588 16107 18230 19164 20264 21618 23378	27 15 27 27 27 27 26 26 26 26 22 18 15 14 13	13.9 11.8 10.6 1.9 - 6.3 -16.2 -28.7 -44.9 -52.8 -57.6 -60.6 -67.4 -68.3 -66.0 -64.5 -62.1 -59.1	24.4 16.8 18.4 6.0 - 3.1 -12.4 -26.5 -39.9 -41.0 -56.3 -62.5 -62.6 -60.0 -60.7 -58.5 -54.3 -45.5	9.6 9.2 0.2 -10.2 -19.2 -33.5 -49.6 -58.9 -66.5 -63.9 -72.0 -74.3 -69.6 -68.9 -66.8 -62.5 -58.9	27 15 27 27 27 27 27 26 28 15 4	5.5 5.0 -6.0 -13.2 -20.1 -27.8 -39.3 -53.0 -61.4 -64.8 -68.8
Авжев 0000 U.T.	Surface	27 26 26 22 22 21 20 19 16 14	991m.b, 122 1514 3137 4335 57480 9510 10740 12197 14005 16450 18561 19484 20590 21959 23758 26326	998m.b. 176 1552 3180 4435 5875 7563 9652 10910 12383 14187 16617 18680 19633 20708 22078 23891 26497	985m.b. 63 1488 2095 4273 5725 7402 9399 10609 12054 13867 16310 18440 19370 20481 21851 23640 26197	27 27 27 27 26 26 22 22 21 20 19 16 14 11 11	16.6 16.9 6.7 -1.4 -11.6 -23.9 -39.0 -47.1 -54.6 -62.6 -71.3 -70.9 -67.4 -63.0 -60.6 -59.0 -53.1	23.4 22.2 10.7 2.3 -5.6 -17.0 -31.2 -41.7 -51.0 -58.4 -69.7 -61.4 -59.6 -59.2 -57.8 -54.8 -51.4	11.0 11.8 2.9 -5.0 -15.0 -28.0 -44.0 -51.8 -60.0 -65.4 -74.6 -74.6 -71.9 -67.1 -63.8 -63.6 -55.4	27 	0.3

N = The number of cases the element has been observed during the month.

f * The atmospheric pressure corrected to the elevation of the radiosonde station.

Table B 1 (contd.). -UPPER AIR CLIMATOLOGICAL DATA FEBRUARY-1969

ion	Pressure Surface	Alti	tude of Pre	sure Surfac	e (gpm)		Tempe	rature (°C)		Dew	Point (°C
Station	Millibar	N	Mean	Highest	Lowest	Ŋ	Mean	Highest	Lowest	N	Mean
	Surfece	25	1013m.b.	1021m.b.	1005m.b.	25	18.2	21.2	14.5	25	10.5
1	1000	25	128	206	71	25	17.0	20.7	13.4	25	8.4
	850 700	25 24	1501 308 6	1563 3155	1446 2998	25 24	$egin{array}{c} {\bf 9.2} \\ {\bf 1.3} \end{array}$	19.6 4.9	$-\frac{0.2}{1.8}$	25 24	-4.8 -12.8
E	600	24	4309	4384	4203	24	6 4	4.0	10.3	24	18.4
Merse Matrub (A) 1200 U.T.	500	24	5710	5794	5591	24	16.1	14.0	19.0	24	26.
20	400 300	23 23	7346 9346	7447 9468	7237 9224	23 23	28 4 44 .0	25.7 39.5	30.9 47.8	23 22	-38 -53.
<u> </u>	250	22	10545	10677	10412	22	-53.3	-44.7	57.3	20	- 62.
	200	20	11954	12085	11842	20	60.2	49.6	67.4	6	- 64.
E /	150 100	17 11	13746 16271	13868	13681	17	58.4	- 54.0	63.4		
fat	70	6	18440	1 6373 18540	16189 18340	6	64.5 64.6	-62.6 -61.0	65.8 70.0		
5	60	6	19383	19465	19283	6	~ 62.9	58.4	66.6	j	
ler!	50	5	20496	20614	20399	5	60 7	57.8	62.6		
7	40 30	4 3	21862 2 3 629	21994 23612	21798 23612	4 3	58.3 57.1	56.5 55.0	59.3 59.0		_
11	20				20012		1	- 00.0		-	
,	10				***						
	Surface	26	999m.b.	1007m.b.	989m.b.	26	22.5	31.2	16.7	26	4.7
- 1	850	26 26	13 3 1514	$\begin{array}{c} 200 \\ 1568 \end{array}$	43 1454	14 26	19.8 11. 7	27.4 21.8	$\begin{array}{c} 16.4 \\ 2.0 \end{array}$	14 26	3.8
	700	25	3115	3184	3043	25	3.4	8.0	2.0	25	-14.0
[]	600	25	4342	4428	4234	25	5 .2	1.0	9.7	25	20.4
. 1	500 400	25 24	5750 7399	5850 7520	5639 7239	$\frac{25}{24}$	14.9 27.3	11.6 24.4	- 17.8	25	29.5
3	300	23	9406	9544	9301	23	42.7	38.9	36.1 47,8	24 23	41.0 55.2
Helwan 1200 U.T.	250	23	10614	10753	10497	23	51.3	-40.0	57.8	23	-64.1
82 (200 150	$\frac{23}{21}$	12041 13857	12209	11877	23	57.7	49.0	- 66.0	10	- 65 .5
g \	190	17	16353	14056 16550	136 53 1 6184	21 17	59.6 67.0	55.0 61.7	64 5 69.0	6	69.4
E	70	14	18516	18660	18390	14	66.4	-60.3	69. 5		
H	60	13		19592	19331	13	63.9	59.7	6 6 6		~
11	50 40	10 6	$20593 \\ 21993$	$20705 \\ 22092$	204 60 21894	10 6	62 .5 58 .3	—58.3 -56.1	65.9 60.0		
- 11	30	4	23851	23910	23716	4	54.4	- 52.3	- 55.7		
\ \	$\frac{20}{10}$ [2	$\boldsymbol{26526}$	26528	26525	2	50.0	50.0	- 50.1	:	
'	10					****			**=-	-	
	Surface 1000	26	991 m.b.	996m.b.	985m.b.	26	27.6	34 5	20.0	26	0.6
<i> </i>	850	$\frac{26}{23}$	111 1517	158 1554	59 1485	26	17 1	23 6	10.5	90	6.4
11	700	$\overline{26}$	3142	3193	3101	26	6.7	10.8	12 5 2.9	26 26	0.4
j]	600	26	4388	4441	4339	26	- 1.4	2.5	5.2	26	21.2
يز ا	500 400	2 6 26	5854 7490	5876 7579	5744 7384	26 2 6	$\begin{array}{c} -11.1 \\ 23.3 \end{array}$	7.0 10.3	16.3	26	29.6
ا ا ا	300	26	9538	9 64 6	9372	$\frac{26}{26}$	$\begin{array}{c} 23.3 \\ -37.7 \end{array}$	19.8 -29.5	29.0 - 44.0	$\begin{array}{c} 26 \\ 25 \end{array}$	40.1 52.0
8	250	25	10772	10896	10580	25	46.4	40.6	51.7	24	- 59.4
Aswan 1200 U.T.	200 150	25 25	12 2 24 14034	12369 14192	12025 13848	25 25	54.1	50 1	60-3	23	65,7
	100	23 22	16489	16603	16359	$\frac{25}{22}$	61.7 - 70.4	$\frac{51}{63.7}$	68.0 74.9	2	68.6
\$	70	20	18600	18720	18506	20	-69.7	- 67.2	74.0		
1	60 50	17 16	19528 20655	19650	19408	17	65.6	59.8	- 68.8		_
1 1	40	11	20055 22079	20874 22257	20545 21945	16 11	~ 61.3 58.6	55.4 55.5	$\begin{array}{c} -63.5 \\ -63.0 \end{array}$		_
, ,	30	10	23914	24086	23763	9	54,2	52.0	- 55,8		_
\ \	20	7	26555	26708	26405	7	-49.0	45.9	-52.3		
'	10]	1	31388	Name of the last		1	33.4	·	P11.000		

N = The number of cases the element has been observed during the month.

[•] The atmospheric pressure corrected to the elevation of the radiosonde stations.

Table B 2.—MEAN AND EXTREME VALUES OF THE FREEZING LEVEL AND THE TROPOPAUSE. THE HIGHEST WIND SPEED IN THE UPPER AIR

FEBRUARY - 1969

					Free	zing Le	vel							First	Tropo	pause				Highe	st wi	nd sp	eed.
			Mean			Highest	,		Lowest			Mean		I	lighest			Lowest		(mc	(p.)		to t
	Station	Altitude (gpm)	Pressure (mb.	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Direction (000360)	Speed in Knots
		(N)	(N)	(N)			:				(N)	(N)	N)						And the second s				
	Mersa Matruh (A)	3058 (26)	703 (26)	-10 · 1 (26)	3680	647	-12.9	2760	730	-4.2	11196 (15)	225 (15)	-61 · 3 (15)	12380	184	-67.2	9570	287	-51.7	767 0	383	270	115
0000 U.T.	Helwan	33 09 (27)	683 (27)	-13.7 (27)	3860	636	-28.0	1530	844	-4.2	10984 (26)	220 (26)	-60.6 (26)	14944	125	-68.5	9200	311	-43.8	10050	269	3 05	150
	Aswan(A)	4147 (27)	617 (27)	-18.5 (27)	4980	560	-26.0	3700	650	-15.4	16217 (18)	105 (18)	-72.2 (18)	17705	80	-74.4	13550	163	-67.3	14700	114	280	162
		(N)	(N)	(N)							(N)	(N)	(N)										
ا نع	Mersa Matruh (A)	3067 (24)	704 (24)	-12.2 (24)	3770	640	-13.8	1500	845	-1.0	11603 (17)	214 (17)	-60.8 (17)	1 315 0	166	-63.6	10010	272	-50.1	14170	141	280	173
1200 U.T.	Helwan	3619 (25)	658 (25)	-16.7 (25)	4160	619	-25.1	2680	738	-12.1	11900 (20)	205 (20)	-59 8 (20)	15280	123	-65.4	8720	332	-39.5	11160	235	255	174
	Aswan (A)	4151 (26)	617 (26)	-19.8 (26)	4720	579	-22.1	3480	669	-16.8	15928 (20)	114 (20)	-70.5 (2 0)	18200	76	-75.1	11900	210	-58.2	14310	139	280	195

Table B 3.—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES. MERSA MATRUH (A)—FEBRUARY 1969

				Wind between	specified rang	ges of direc	tion (000-	-360)°				Calm	er of (T N)	rind •)
Time	Pressure Surface (Millibar.)	345 015 014 044	074	075 105 / / / 104 134	135 / 164 f) (ff)	165	195 / 224 (ff)	225 / 254 (ff)	255 / 284 (ff)	285 / 314	315 / 344 (ff)	Number of Ca winds	Total Number of Observations (T	Mean Scalar wind Speed (Knots)
		$N \begin{vmatrix} (ff) \\ m \end{vmatrix} N \begin{vmatrix} (ff) \\ m \end{vmatrix}$	N (ff)	\mathbf{Z}_{+}^{+} \mathbf{Z}_{+}^{+}	n X m	N (ff)	N m	N m	N m	N m	N m	Nun	Tots Obse	Mea
0000 U.T.	Surface	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 - 0 0 - 0		3 5 7 9 1 9 0 — 0 — 0 — 0 — 0 — 0 — 0 —		4 12 1 29 1 37 0	0			2 10 3 13 1 13 2 24 1 34 1 59 1 66 1 67 0 — — — — — — — — — — — — — — — — — — —	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27 8 9 9 8 6 6 4 2 	10 13 22 29 32 48 6 71 70 89
1200 U.T.	Sufrace	1 7 2 8 0 - 1 10 0 - 0 - 0 - 1 1 42 6 - 2 2 22 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 -	1 5 3 0 - 2 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 - 0		1 9		1 12 10 3 11 0	0	3 12 5 29 1 7 38 4 48 6 58 7 78 10 86 6 107 4 106		7 10 6 12 2 25 2 20 0	1 2 2 0 0 0 0 0 0 0 0 0	25 23 22 21 19 17 14 12 12 8 5	13 13 14 29 36 47 55 79 90 106 105

N = The number of cases the elemnet has been observed during the month.

TN = The total number of cases the wind has been observed for all directions during the month.

Table B 3.(contd.)—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEA SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES.

HELWAN—FEBRUARY 1969

					Wind	between s	pecified ran	nges of dir	ection (00)360)°		, , , , , , , , , , , , , , , , , , , 		Calm	r of TN)	wind ts)
Time	Pressure Surface (Millibar.)	345 / 014 (ff)	015 / 044 (ff)	045 / 074 (ff)	075 / 104 (ff)	105 / 134 (ff)	135 / 164	165 / 194 (ff)	195 / 224	225 / 254	255 / 284 / (ff)	285 / 314	315 / 344 (ff)	Number of Ca	Total Numher of Observations (FN)	glean Sealar win Speed (Knots)
		N m	N m	N m	N m	N m	N m	Nm	N m	N m	N	Nm	N m		,	
0000 U.T.	Surface	4 7 3 14 4 14 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 —	1 14 3 12 1 9 0	9 8 4 16 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 —	1 10 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	6 7 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0	0	1	0	0 - 0 - 3 18 12 32 16 50 13 55 8 58 5 95 2 84 1 83 	0	1 7 1 24 3 15 1 19 0 — 0 — 0 — 0 — 0 — 0 — — — — — — — —	4 1 0 0 0 0 0 0 0 0 0 0 0	27 15 27 26 26 23 13 9 3 1 —	6 14 21 34 49 59 61 89 105 83
1200 U.T.	Surface	3 8 5 11 4 15 0 0 0 0	4 9 4 22 1 18 0 - 0 - 0 - 0 - 0 - 0 - - -	2 9 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 1	1 6 1 6 0 0 0 0 0 	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	1 5 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 —	7 11 0 3 10 0 0 0 0 	0	2 8 1 7 23 4 40 6 47 4 57 2 89 1 113 0 — — — — — — — — — — — — — — — — — — —	1 16	2 10 1 18 3 14 6 38 5 42 2 26 0 — 1 62 0 — — — — — — — — — —	2 8 1 7 3 15 3 38 1 49 0 — 0 — 0 — 0 — — — — — — — —	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26 14 26 23 21 19 13 6 2	8- 14- 19- 34- 46- 60- 74- 90- 129-

N = Number of cases the element has been observed during the month,

T.N. = The total number of cases the wind has been observed for all directions during the month,

Table B 3.(contd)—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SCLECTED PRESSURE SURFACES. ASWAN (A) — FEBRUARY 1969

					Wind b	etween sp	ecifled rai	ges of dir	ection (000	360)°				E	z Ĉ	pui (
Time	Pressure Surface (Millibar.)	345 / 014	015 044	045 / 074	075	105	135 / 164	165	195 / 224	225	255 / 284	285 / 314	315 / 344	umber of Calm winds	Total Number of Observations (T N)	Mean Scalar wind Speed (Knots)
		N (ff)	N (ff) m	N (ff)	N (ff)	N (ff) m	N (ff)	N (ff)	N (ff)	N (ff)	N (ff)	N (ff)	N (ff)	Num	Total Obser	Mean
0000 U.T.	Surface	13 8 	2 8 1 20 0 1 25 0 0 0 0 0 0 0 0 -	2 8 6 9 0 0 0 0 0 0 0 0	0 — 1 21 14 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0	3 6 2 13 1 8 0	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 - 1 13 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	0 0 - 0 - 0 - 0 - 0 - 0 1 18 2 14 0 - 0	0 1 4 3 14 4 20 2 30 1 71 1 72 1 82 2 91 0 1 67 2 30 2 41 1 30 3 23 2 20 0	0 — 1 8 6 12 7 14 13 30 13 41 11 65 12 81 12 99 11 91 8 51 10 34 9 25 7 31 3 16 5 17 1 9	1 9 6 10 5 15 9 19 8 28 11 44 8 50 7 70 6 84 7 84 7 64 1 35 1 54 1 13 0 — 2 25 2 32	5 9 3 15 4 20 5 23 2 23 0 — 0 — 0 — 0 — 0 — 1 5 0 — 0 —	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27 — 26 26 26 26 25 20 20 18 16 13 12 10 9 4	8
1200 U.T.	Surface	11	7 9	0	0	0	1 6	2 8 0	0 — 1 10 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0	0 — 0 — 3 9 6 18 0 — 1 39 2 50 3 67 2 85 1 95 1 38 2 24 1 29 1 33 1 32 1 16 1 20 — —	0 0 6 14 6 16 17 31 16 40 15 64 15 85 18 93 17 89 14 50 7 28 5 25 3 20 1 17 1 14 0	0 — — — — — 2 21 9 20 6 34 9 50 7 69 6 72 5 92 5 83 4 50 6 29 4 16 2 15 2 24 0 — — — — — — — —	5 8 	0 0 0 0 0 0 0 0 0 0 0 0 0	26	9

N = The number of cases the element has been observed during the month.

TN = The total number of cases the wind has been observed for all directions during the month,

REVIEW OF AGRO-METEOROLOGICAL STATIONS

EL KASR-FEBRUARY 1969

This month was slightly warmer and remarkably less rainy than normal. The month was characterized by six warm spells during the periods (5th-6th), (10th-11th), (14th-15th), on the 21st, 25th and 28th respectively. The third warm spell was the most pronounced and yielded the highest maximumair temperature for the month (31.4°C) on the 15th. Three cold waves generally of light intensity were experienced during the periods: (7th-9th), (12th-13th) and (18th-20th). The first cold wave yielded the highest daily rainfall for the month (3.4 mms.) on the 7th and the second cold wave yielded the lowest maximum! air remperature (15.8°C) on the 12th.

The extreme maximum soil temperatures were lower than the corresponding values of last February at depths between 2, 20 cms. and the differences ranged between 4.1°C at 2 cms. and 0.1°C at 20 cms. At deeperdepths between 50, 100 cms. the extreme soil maxima were slightly higher (0.1°C) than last February.

The extreme minimum soil temperatures were lower than the corresponding values of last February at all depths between 2, 100 cms. and the differences ranged between 2.5°C at 50 cms, and 1.5°C at 100 cms.

The mean daily Pan evaporation was 1.15 mm. less than the corresponding value of February 1968. The mean daily actual duration of bright sunshine was 0.5 hour more than the corresponding value of February 1968.

TAHRIR - FEBRUARY 1969

This month was slightly warmer than last February and almost rainless. The month was characterized by four warm spells during the periods (4th-6th), (10th-11th), (15th-17th) and (22rd-28th). The last warm spell was the most pronounced, and yielded the highest maximum air temperature for the month (30.9°C) on the 25th. Three light cold waves were experinced during the periods (7th-9th), (12th-14th) and (18th-21st) The first cold wave yielded the lowest maximum air temperature for the month (19.5°C) on the 8th.

The extreme maximum soil temperatures were higher than the corresponding values of last February at all depths between 2, 100 cms, and the differences ranged between 2.3°C at 20 cms, and 1.1°C at 5 cms. The extreme minimum soil temperatures were also higher than the corresponding values of last February at all depths between 2, 100 cms, and the differences ranged between 1.0°C at 5 cms, and 0.2°C at 100 cms.

The mean daily Pan evaporation was 0.25 mm. more than the corresponding value of February 1968. The mean daily actual duration of bright sunshine was 0.2 hour less than the corresponding value of February 1968.

BAHTIM - FEBRUARY 1969

This month was warmer than last February and rainless. The month was characterized by four warm spells during the periods (4th-6th), (11th-12th), (15th-17th) and (24th-28th). The last warm spell was the most pronounced and yielded the highest maximum air temperature for the month (30.6°C) on the 25th. Four cold waves were experienced on the 1st and during the periods (8th-10th), (13th-14th) and (18th-20th). The lowest maximum air temperature for the month was 18.0°C and was reported on both the 1st and 13th. The minimum air temperature at 5 cms. above ground fell below 0°C on the 2nd and 14th only when its values were - 1.1°C respectively.

The extreme maximum soil temperatures were higher than the corresponding values of last February at all depths between 2, 100 cms. and the differences ranged between 5.0°C at 5 cms. and 0.5°C at 2 cms. The extreme minimum soil temperatures were also higher than the corresponding values of last February at all depths between 2, 100 cms. and the differences ranged between 1.1°C at 50 cms. and 0.3°C at 2 cms.

The mean daily Pan evaporation was 1.34 mm. more than the corresponding value of February 1968. The mean daily actual duration of bright sunshine was 0.4 hour less than the corresponding value of February 1968.

KHARGA -- FEBRUARY 1969

This month was warmer than normal and rainless. The month was characterized by four heat waves during the periods (2nd-7th), (11th-12th), (14th-17th) and (22nd-28th). The last heat wave was the most pronounced and yielded the highest maximum air temperature for the month (36.6°C) on the 27th. Three cold waves were experienced during the period (8th-10th), on the 13th and during the period (18th-21st). The first cold wave yielded the lowest maximum air temperature for the month (19.8°C) on the 8th.

The extreme maximum soil temperatures were higher than the corresponding values of last February at all depths between 2, 100 cms. and the differences ranged between 3.6°C at 10cms, and 0.9°C at 100 cms. The extreme minimum soil temperatures were higher than the corresponding values of last February at all depths apart from the 50 cms, depth where the values were the same, the differences ranged between 3.4°C at 2 cms, and 0.4°C at 100 cms.

The mean daily Pan evaporation was 1.67 mm more than the corresponding value of February 1968. The mean daily actual duration of bright sunshine was the same as the corresponding value of February 1968.

Table C 1.—AIR TEMPERATURE AT 1½ METRES ABOVE GROUND FEBRUARY — 1969

		Air Te	mperati	ure (°C)				Mean			urs of d			erature		
STATION	Mean Max.	Mean Min.	Mean of the day	Night time mean	time	5°C	0°C	5°C	10°C	15°C	20°C	25°C	30°C	35°C	40°C	45°C
		1		i		ļ		= -	!	1	1		!			
El Kasr	19.8	8.7	14.4	11.9	16.8	24.0	24.0	24.0	18.5	10. 5	1.9	0.3	0.1	0.0	0.0	0.0
Tahrir	23.5	8.8	15.3	12.2	18.3	24.0	24.0	23.8	19.4	12.4	4.4	1.2	0.04	0.0	0.0	0.0
Bahtim	23 .0	6.4	14.5	10.6	18.1	24.0	24.0	22.3	17.6	11.2	4.7	1.4	0.0	0.0	0.0	0.0
Kharga	28.3	9.1	18.9	14.9	22 6	24.0	24.0	23.9	21.9	15. 6	9.9	4.8	2.0	0.2	0.0	0.0

Table C 2.—ABSOLUTE VALUES OF AIR TEMPERATURE AT 1½ METRES ABOVE GROUND,
ABSOLUTE MINIMUM AIR TEMPERATURE AT 5cms ABOVE GROUND OVER
DIFFERENT FIELDS.

FEBRUARY -- 1969

	Max.	Temp. at	1½ metre	es (°C)	Min.	Temp. at	1½ metre	s (°C)	Min. Te	emp. at 5	ems. aho	ve (°C)
STATION	Higl	nest	Lo	west	High	nest	Lov	vest	Dry	soil	Gre	186
	Value	Date	Value	Date	Value	Date	Value	Date	Value	Date	Value	Date
El Kasr	31.4	15	15.8	12	14.1	26	5.0	1	1.8	1	_	
Tahrir	3 0.9	25	19.5	8	17.5	16	3.2	ı	1.3	1	_	
Bahtim	30.6	25	18.0	1,13	13.7	16	0.8	1	-1.1	2		
Kharga	36.6	27	19.8	8	16.2	28	3.0	2	0.1	2		<u>-</u>

Table C 3.—(SOLAR+SKY) RADIATION, DURATION OF BRIGHT SUNSHINE, RELATIVE HUMIDITY, VAPOUR PRESSURE AT $1\frac{1}{2}$ METRES ABOVE GROUND, EVAPORATION & RAINFALL

FEBRUARY - 1969

×	y) Radia- cal/cm²	Durat Sunsh	ion of I	Bright ours)	Re	Relative Humidity				Vapo	ur pr	essure	(mms)			oration ms)	Rain	nfaļl (m	ms)
STATION	(Solar+Sky) tion gm. cal	Total Actual monthly	Total Possible monthly	%	Mean of day	1200 U.T.	Lowest	Date	Mean of day	1200 U.T.	Highest	Date	Lowest	Date	Piche	Pan class A	Total Amou- nt Monthly	Max. Fall in one day	Date
El Kasr	307.6	222 .5	309.8	72	74	61	19	15	8.9	9.8	13.9	25	5.2	11	5.2	5.42	3.7	3.4	4
Tahrir	390.5	222.8	311.1	72	66	43	15	16	8.2	8.0	13.6	26	4.3	16	5.7	5.09	Tr.	Tr.	22
Bahtim .	403.2	223.4	311.7	72	66	43	21	15	7.8	8.3	13.6	26	4.l	12	5.9	5.43	0	0	
Kharga .	3 95.0	290.8	316.9	92	32	20	9	6,15	4.8	5.1	8.7	28	2.3	7	18.0	9.67	0	0	_

Table C 4.—EXTREME SOIL TEMPERATURE AT DIFFERENT DEPTHS (cme)
IN DIFFERENT FIELDS

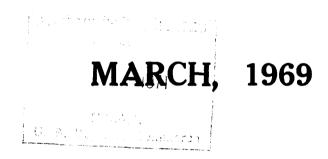
FEBRUARY -1969

STATION	ost (H)	Ex			mpera erent d			-	eld	Ex	treme	soil ter at diff					ield
	Highest Lowest	2	5	10	20	5 0	100	200	300	2	5	10	20	50	100	200	300
El Kaer	H	27.0 5.1			18.9 9.3							· ·					_
l'absir	H	39.2 6.6	32 .3		23.7 11.4				21.3 20.8					1 			
Sahtim	. H L	36.4 6.3	30.0 7.8						23.9 23.3	- 10 m		**************************************		·			
Kharga	. H	41.9							27.5 26.6		-		100 110 4 100 0		Lander		

Table C 5. SURFACE WIND

FEBRUARY-1969

		d Speed n t 1 metr			Days w	ith surfac	e wind sp	peed at 10) metros		Max. G	nst (knote metres
STATION	Mean of the day	Night time mean	Day time mean	≥10 knots	≥15 knots	≥20 konts	≥25 knots	30 جے knots	≥35 knot∗	≥40 knots	value	Date
El Kast	2.2	1.9	2.5									
Tahrir	2.1	1.6	2.7	26	13	5	3	; u	. 0	0	34	7,8,12,
Bahtim	2.4	1.7	3.0	24	14	6	4	1	0	0	40	12
Khargs	3.0	2.2	3.8	23	17	8	. 2	1	0	: 0	35	18,19
			1	[:							


PRINTED IN U.A.R. BY
THE GRNERAL ORGANIZATION
FOR GOVT. PRINTING OFFICES, CA120

ALY SULTAN ALY
UNDER-SECRETARY OF STATE
Chairman of the Board of Directors

MONTHLY WEATHER REPORT

VOLUME 12 NUMBER 3

U.D.C. 551. 506.1 (62)

METEOROLOGICAL DEPARTMENT
C A I R O

PUBLICATIONS OF THE METEOROLOGICAL DEPARTMENT OF THE UNITED ARAB REPUBLIC—CAIRO

In fulfilment of its duties, the U.A.R. Meteorological Department issues several reports and publications on weather, climate and agrometeorology. The principal publications are described on this page.

Orders for publications should be adressed to:
"The Director General, Meteorological Department, Kubri-el-Qubbeh — CAIRO".

THE DAILY WEATHER REPORT

This report is issued daily by the Meteorological Department since the year 1901. It includes surface and upper air observations carried out by the relevant networks of the Republic at the principal hours of observations.

As from January 1968 this report was revised to include a condensed representative selection of surface and upper air observations besides the 1200 U.T. surface & 500 mb charts.

THE MONTHLY WEATHER REPORT

First issued in 1909, the Monthly Weather Report served to give a brief summary of the weather conditions that prevailed over Egypt during the month, with a table showing the mean values for few meteorological elements and their deviations from the normal values. From 1954 to 1957 this report was in a rapid state of development and extension resulting into a voluminous report on January 1958 giving surface, upper air, and agro-meteorological data for U.A.R.

As from January 1964, the Monthly Weather Report was pressed to give climatological data for a representative selection of synoptic stations.

THE AGRO-METEOROLOGICAL ABRIDGED MONTHLY REPORT

Gives a review of weather experienced in the agro-meteorological stations of the U.A.R. as well as monthly values of certain elements.

THE ANNUAL REPORT

This report gives annual values and statistics for the various meteorological elements, together with a summary of the weather conditions that prevailed during all months of the year.

CLIMATOLOGICAL NORMALS FOR EGYPT

A voluminous edition was issued in march 1968 which brings normals and mean values up till 1960.

METEOROLOGICAL RESEARCH BULLETIN

First issued in January 1969 on a bi-annual basis. It includes research works carried out by members of staff of "The Meteorological Institude for Research and Training" and the Operational Divisions of Meteorological Department.

TECHNICAL NOTES

As from October 1970, the Meteorological Department started to issue a new series of publications in the form of Technical Notes (non periodical) on subjects related to studies and applications of meteorology in different fields for the benefit of personnel working in these fields.

The first Technical Note I was issued in October 1970 on : Sandstorms & Duststorms in the U.A.R.

MONTHLY WEATHER REPORT

VOLUME 12 NUMBER 3

MARCH, 1969

U.D.C. 551. 506.1 (62)

METEOROLOGICAL DEPARTMENT
C A I R O

CONTENTS

		PAGI
	Genral Summary of Weather Conditions	1-2
	SURFACE DATA	
Table	A1 Monthly values of the Atmospheric Pressure, Air Temperature, Relative Humidity, Bright Sunshine Duration and Piche Evaporation	3
,,	A2.—Maximum and Minimum Air Temperatures	4
,,	A3.—Sky Cover and Rainfall	5
,,	A4.—Number of Days of Occurrence of Miscellaneous Weather Phenomena	6
,,	A5.—Number in Hours of Occurrences of Concurrent Surface Wind Speed and Direction Recorded Within Specified Ranges	7,8
	UPPER AIR DATA	
Table	B1.—Monthly Means and Monthly Absolute Higher & Lower Values of Altitude, air Temperature & Dew point at Standard and Selected Pressure Surfaces	9,10
**	B2.—Mean and Extreme values of The Freezing Level and The Tropopause; The Highest Wind Speed in The Upper Air	11
,,	B3.—Number of Occurrences of Wind Direction Within Specified Ranges and The Mean Scalar Wind Speed at the Standard and Selected Pressure Surfaces	12-14
	AGRO-METEOROLOGICAL DATA	
	Review of Agro-Meteorological Stations	15-16
Table	C1.—Air Temperature at 1½ Metres Above Ground	17
,,	C2.—Aboslute Values of Air Temperature at 1½ Metres Above Ground, Absolute Minimum Air Temperature at 5 Cms. Above Ground Over Different Field.	17
,,	C3.—(Solar + Sky) Radiation, Duration of Bright Sunshine, Relative Humidity and Vapour Pressure at 1½ Metres Above Ground, Evaporation and Rainfall	17
"	C4.—Extreme Soil Temperature at Different Depths in Different Fields	18
"	C5.—Surface wind	18

Note: For explanatory notes on tables please refer to volume 12 number 1 (January 1969).

GENERAL SUMMARY OF WEATHER CONDITIONS

MARCH 1969

Much changeable, characterized by three pronounced khamsin heat waves, rainy during the third week. Frequent rising sand, mostly during the second half of the month.

GENEERAL DESCRIPTION OF WEATHER

Weather during this month was markedly changeable, characterized in particular by three pronounced khansin heat waves round the periods: (1—7), (15—17) and (24—31). The break down of the first and second heat waves was associated with appreciable drop in temperature, and followed by weather of mild temperature.

Light rain fell over north of the Republic mainly during the second mild period. Rain was locally heavy over scattered parts in the Mediterranean district on the 20th.

Rising sand occurred during many days, the highest frequency was reported in the Red Sea district. Widespread sandstorms blew between the 17th and 19th.

PRESSURE DISTRIBUTION

The most important pressure systems over the synoptic surface maps during this month were:

- -- The Siberian anticyclone and its extension through Central Europe.
- The subtropical high pressure over the Atlantic.
- Deep low pressure systems through North Europe.
- Secondary depressions through the Mediterranean and its vicinities, and desert

khamsin secondaries travelling near the coast of North Africa.

This month was characterized with high-frequency of khamsin depressions, seven khamsin secondaries have been distinguished.

During the first ten days of the month, three khamsin depressions traversed the northern parts of the Republic. The first khamsin appeared over the Gulf of Serte on the 1st and passed through north of U.A.R. on the 2nd. The second and third khamsin secondaries originated over North Algiers on the 3rd and 7th respectively, and passed through north of U.A.R. on the 7th and 9th.

The fourth khamsin depression during this month appeared over the Gulf of Serte on the 16th as a secondary to a deep trough of low pressure extending over Italy. The khamsin secondary passed through northern parts of the Republic on the 17th. The depression over Italy passed through East Mediterranean on the 19th; meanwhile a new depression developed west of Italy and proceeded eastwards, passing through East Mediterranean on the 21st.

The fifth khamsin depression originated over North Algiers on the 22nd, as a secondary to a deep depression over Spain. The khamsin secondary proceeded northeastwards passing through East Mediterranean on the 25th; while the main depression proceeded southeastwards, passing through East Mediterranean on the 27th.

The last two khamsin depressions during this month developed south Tunisia on the 27th and 30th respectively, and traversed northern parts of the Republic and East Mediterranean on the 29th and 31st respectively.

As a result of the transits of the above mentioned depressions, the barometric pressure in U.A.R. remained appreciably below normal most days of the month. Only during the two periods (11—14) and (22—24), the barometric pressure was above its normal as a result of the extension of either the subtropical high pressure over North Africa and East Mediterranean or the high pressure over the Balkans.

The upper air charts during this month showed the following outstanding features.

- —Two deep upper lows: one over North Russia and the other over North Atlantic.
- Secondary upper troughs or lows through the Mediterranean and its vicinities, passing through north of U.A.R. on the 3rd,7th, 10th 14th, 22nd and 30th.

SURFACE WIND

As a result of the frequent transit of pressure disturbances through the country during this month, surface wind showed marked changeability. Surface winds blew generally from easterly direction in advance of the travelling khamsin seccondaries and Mediterranean troughs, though they blew from southwesterly direction during their passages, and from northwesterly in their rears. Winds were mostly light to moderate, though they became fresh to strong during many days of the month, mainly in the Mediterranean, Western Desert and Red Sea districts. On

the other hand, calms were frequent most of night and early morning intervals in scattered localities.

Gales were recorded at Zaher on the 17th & 31st, at Cairo on the 17th & 18th, at Hurghada on the 7th & 10th, at Asyout on the 17th & 18th and at Matruh on the 16th.

TEMPERATURE

Maximum air temperature showed large variability during this month, its value ranged generally beween 18°, 28°C in the northern parts, between 20°, 34°C in the central parts, between 28°, 38° in the southern parts.

The absolute maximum air temperature was 42.8°C recorded at Dakhla on the 31st.

Minimum air temperature also experienced similar large fluctuations, but rather less in amplitude.

Minimum air temperature values ranged most days of the month between 7°, 16°C in the northern and central parts, and between 10°, 20°C in the southern parts.

The absolute minimum air temperature was 5.1°C recorded at Bahariya on the 11th.

PRECIPITATION

Light to moderate rain fell over the northern parts, and extended till north of upper Egypt district on the 9th and during the period (16th-22nd). Rain was locally heavy over scattered places in the Mediterranean district on the 20th. The monthly rainfall was above normal in general.

The highest daily rainfall was 11.8 mm. recorded at Mersa Matruh on the 20th.

The highest monthly rainfall was 35.9 mm. recorded at Damietta.

M. F. TAHA

Under Secretary of State
Director General
Meteorological Department

Cairo, March 1971

TABLE A 1. — MONTHLY VALUES OF THE ATMOSPHERIC PRESSURE, AIR TEMPERATURE, RELATIVE HUMIDITY, BRIGHT SUNSHINE DURATION & PICHE EVAPORATION. MARCH 1969

		ric Pressure				Air 7	Cemperatu	re °C				Relat			ight Sunsl		
	(m.bs)	M.S.L	Maxii	num	Mini	mum		Dry	Bulb	Wet	Bulb	Humid	ity %	Du	ration (Ho	ours)	Piche
STATION	Moan	D.F. Normal or Average	(A) Mean	D.F. Normal or Average	(B) Mean	D.F. Normal or Average	A+B 2	Mesn	D.F. Normal or Average	Mean	D.F. Normal or Average	Mean	D.F. Normal or Average	Total Actual	Tatal Posible	%	Evap- (mms) Mean
Sallum Mersa Matruh . (A) Alexandria (A) Port Said (A) El Arish	1011.0 1011.3 1011.6 1011.0	-4.0 -4.3 -4.0 -4.4 -	22.7 22.0 22.8 22.1	+1.3 +1.5 +1.6 +1.9	13.2 12.0 12.2 14.2	+2.1 +2.0 +1.0 +0.6	18.0 17.0 17.5 18.2	17.4 16.4 17.1 17.4	+1.0 +1.4 +1.3 +1.0	13.0 13.2 13.5 14.0	+1.2 +1.8 +1.3 +0.7	57 68 64 67	+ 2 + 5 + 2 - 1 -	214.4 203.0	371.6 371.6 —	57 55 —	7.4 7.3 6.0 6.4 —
Tanta	1011.5	-3.5	24.7	+1.0	11.4	+3.1	18.0	17.2	+1.5	13.2	+1.4	61	+ 1	205.9	371.8	56	5.0
Cairo (A)	1011.2	⊸4.1	26.9	+3.0	13.5	+2.1	20.2	20 0	+2.4	13.4	+1.2	43	- 7	_	-	-	17.5
Fayoum		-4.1 -3.5 -2.3 -2.3	28.6 29.0 30.8 33.6 34.3	+3.3 +3.2 +4.2 +4.3 +3.7	12.0 10.8 13.7 14.2 17.1	$\begin{array}{c c} +2.0 \\ +2.9 \\ +3.1 \\ +3.5 \\ +3.8 \end{array}$	20.3 19.9 22.2 23.9 25.7	20.1 19.5 22.2 23.6 25.6	$ \begin{array}{r} +2.2 \\ +2.9 \\ +3.6 \\ +3.5 \\ +3.4 \end{array} $	13.7 13.1 13.6 14.5 13.7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	45 44 32 31 19	$ \begin{array}{r} -2 \\ -4 \\ 0 \\ -3 \\ +4 \end{array} $	267.0 — — —	372.2 — — —	72 - -	6.8 10.4 17.6 9.9 20.2
Siwa	1010.4 1011.0 1012.6 1012.4 1011.5	-5.2 -4.4 -4.0 -2.2 -3.0	29.1 29.8 31.0 33.0 36.3	$ \begin{array}{r} +4.1 \\ +4.2 \\ +4.4 \\ +5.2 \\ +7.8 \end{array} $	12.6 13.0 12.6 11.0 13.9	+4.2 +4.1 +3.7 +1.7 +2.9	20.8 21.4 21.8 22.0 25.1	20.8 21.3 21.6 22.1 23.7	-3.6 -3.3 -3.7 -3.8 -3.4	12.8 12.4 12.0 11.8 12.3	$ \begin{array}{r} +2.3 \\ +1.8 \\ +2.3 \\ +2.2 \\ +1.0 \end{array} $	34 29 24 21 23	- 3 - 7 - 3 - 3 - 6	313.4		 84	12.7 13.5 18.7 16.8 18.1
Tor	1010.8 1011.2		26.3 26.2	+2.9 +1.4	15.4 17.6	+3.0 +1.1	20.8 21.9	21.2 22.2	- +2.4 +1 4	- 16.0 16.6	- +2.8 +2.3	 55 53	- + 5 + 7	_	_ _ _	-	11.9- 12.5

Table A2.- MAXIMUM AND MINIMUM AIR TEMPERATURES

MARCH - 1969

			M	aximum	Тетрега	sture °(·			Grass Ten				Minim	um Tem	perature	°C		
Station	Highest	te	est	to to	No.	of Day	s with	Max-Te	mp.	Mean	From Normal	Highest	te	est	te te	N	o. of D Min. J	-	h
	Hig	Date	Lowest	Date	>25	>30	>35	>40	>45	Me	D. From	Hig	Date	Lowest	Date	<10	< 5	<0	<-5
Sallum	36.8 37.5 36.8 30.8 —	26 26 26 26 —————	17.1 16.8 17.6 16.6	12 22 22 22 22 —	9 7 9 8 —	3 3 1	2 1 1 0 —	0 0 0 0 -	0 0 0 -	13.6 :- 11.5 14.1 		15.9 15.0 16.6 17.2	25,26,27 3 16 6 —	9.6 8.3 6.9 10.6	23 12 24 24 —	2 5 6 0 —	0 0 0 0 0 -	0 0 0 0 -	0 0 0 0 -
Tanta	36.8	26	17.4	22	17	5	1	0	0	_	_	15.0	29	5.8	12	9	0	o	0
Cairo (A)	36.8	26	18.3	23	17	11	4	o	0		_	19.8	25	8.0	12	5	0	0	0
Fayoum	38.2 40.0 41.2 42.1 41.8	26 31 28 31 31	20.7 21.0 21.5 24.4 25.0	19 11 23 23 23	19 20 21 30 30	13 15 16 18 22	7 5 10 15 16	0 0 3 5 5	0 0 0	9.8 8.4 12.0 10.9	-	17.9 17.6 19.9 20.8 23.3	29 29 29 31 31	6.4 5.5 6.7 8.4 9.8	23 11 12 24 15	8 13 6 8 1	0 0 0 0	0 0 0 0	0 0 0 0 0
Siwa	41.6 40.1 41.4 42.8 42.4	28 28 28·31 31 31	20.7 21.2 21.1 22.9 24.4	13 10 11 13 14	21 21 23 25 27	12 14 17 20 19	6 9 9 14 15	2 1 2 6 5	0 0 0 0	11.6 11.8 12.0 —	 - - -	19.1 23.0 21.1 16.6 23.6	27 27 29 17 30	5.4 5.1 5.9 5.6 7.4	14 11 12 23 16	8 7 11 11 4	0 0 0 0 0	0 0 0 0 0	0 0 0 0
Cor	 31.4 34.0		21.6 22.0	23 23	21 21	3 1	- 0 0	0 0		 	-	21.7 21.4	19 28	10.6 14.5	16 13	0 0	0 0	0 0	0 0

		Mean S	Sky Cove	r Oct.					Rain	fall mu	18.					
Station	00	06	12	18	Daily	Total	D. From	Max. in one		N	umher	of Days	with A	Amount	of Rai	n
	U.T.	U.T.	U.T.	U.T	Mean	Amount	Normal	Amount	Date	<0.1	≥0.1	≥1.0	≥5.0	≥10	≥25	≥50
Sallum (A) Mersa Matruh (A) Alexandria (A) Port Said (A) El Arish (C) Ghazza (C)	5.4 3.4 5.3	5 2 6.0 5.6 3.9	4.5 5.2 5.4 4.5	4.6 4.1 4.7 —	4.9 4.5 5.2 —	7.7 19.0 14.9 15.3	- 7.2 + 6.7 + 2.5 + 7.6	3.8 11.8 7.4 6.2	20 20 21 20 —	0 3 1 1 —	5 5 6 6	3 4 3 4	0 1 2 1 -	0 1 0 0 -	0 0 0	0 0 0 -
Tanta	2.2	3.9	4 7	2.6	3.5	16.4	+12.2	6.0	21	6	6	5	1	0	0	0
Caire (A)	2.9	4.1	4.4	3.5	3.7	14.6	+12.8	4.2	21	1	5	4	0	0	0	0
Fayoum (A) Minya (A) Assyout (A) Luxor (A) Aswan	1.2 0.8 0.7 0.7	4.0 2.0 1.6 1.6 1.1	4.5 2.9 2.2 1.6 1.5	3.7 2.4 1.6 1.1 1.1	2.3 1.4 1.2 1.1	4.9 0 0 0 0	+ 3.5 - 0.3 - Tr. - Tr. - Tr.	3.9 0 0 0	21 — — —	1 0 0 0 0	2 0 0 0 0	2 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
Siwa	2.2 1.2 — 0.2 0.6	3.1 2.8 1.5 0.5 1.1	3.1 3.5 2.9 1.0 1.3	2.0 3.4 1.8 0.8 0.7	2.6 2.3 - 0.6 1.3	1.1 Tr. 0 0	+ 0.9 0 - 0.2 - Tr. - Tr.	1.1 Tr. 0 0	21 8.9.19 — — —	0 3 0 0 0	1 0 0 0	1 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0
Tor	0.4	1.5	2.5 1.9	0.9 1.0	1.4	0 0	- 0.4 - 0.3	0 0	= -	0 0	0 0	0 0	0 0	0 0	0 0	0 0

Table A 4. - DAYS OF OCCURRENCE OF MISCELLANEOUS WEATHER PHENOMENA.

MARCH 1969

		Precip	itation			a a	metres	res	res	Vis	trising	stor m etres			
Station	Rain	Snow	lce. Pellets	Hail	Frost	Thunderstorm	Mist Vis > 1000	Fog Vis <1000 Metres	Haze Vis	Thick Haze Vis	Dust or Sandrising Vis ≥ 1000 Metres	Dust or Sandstorm Vis <1000 Metres	Gale	Clear Sky	Cloudy Sky
Sallum (A) Mersa Matruh (A) Alexandria (A) Port Said (A) Al Arish (B) Ghazza (B)	5 5 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0	0 0 0	0 1 1 0	0 5 6 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 7 0 —	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 11 7 6 —	2 3 3 2	0 1 0 0	0 2 0 	7 6 7 —
Tanta	6	0	0	0	0	0	1	0	2	0	3	0	0	3	0
Cairo (A)	5	0	0	0	0	0	2	1	6	0	12	4	2	5	0
Fayoum	2 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 2 0 0	0 0 0 0	0 8 6 14 3	0 0 0 0	3 8 6 9 15	1 3 3 2 2	0 0 2 0 0	17 24 24 25	2 0 0 0
Siwa	1 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 1 0 0	0 0 0 0	1 0 1 0	0 0 0 0	7 8 3 10 0	5 3 3 0	0 0 0 0	10 13 	0 0 - 1
Tor	- 0 0	0	- 0 0	 0 0	0	 0 0	0 1	0	6	 0 0	18 6	 0 1	2 0		 0 0

Table A 5.—NUMBER IN HOURS OF OCCURRENCES OF CONCURRENT SURFACE WIND SPEED AND DIRECTION RECORDED WITHIN SPECIFIED RANGES

MARCH — 1969

		ra)	nrs)		1	Numb	er in					s of w			ng fro	m th	16
Station	calm (hours)	Variable (hours)	Unrecorded (hours)	Wind speed in knots	345 / 014	015 / 044	1	- /	105 / 134	135 / 164	1	195	1	/	1	1	All directions
Sallum	5	1	0	1-10 11-27 28-47 ≥48 All speeds	28 10 0 0 38	37 5 0 0 42	80 26 0 0	51 10 0 0 61	35 1 0 0 36	18 0 0 0 18	8 3 0 0	15 11 1 0 27	11 34 8 0 53	18 9 0 0 27	83 77 0 0 160	74 83 2 0 159	458 269 11 0 738
Mersa Matruh . (A)	3	0	3	1-10 11-27 28-47 ≥48 All speeds	30 16 0 0 46	18 28 0 0 46	11 6 0 0 17	24 27 0 0 51	18 54 0 0 72	13 14 0 0 27	7 11 1 0 19	16 40 18 0 74	45 10 0 0 55	34 30 0 0 64	40 85 8 0 133	37 95 2 0 134	293 416 29 0 738
Aexandria (A)	1	0	2	1-10 11-27 28-47 ≥48 All speeds	45 10 0 0 55	37 4 0 0 41	36 6 0 42	33 8 0 0 46	73 4 0 0 77	23 12 0 0 35	28 15 1 0 44	24 39 0 0 63	16 22 2 0 40	26 85 0 0	74 37 0 0	70 6 0 0 76	490 248 3 0 741
Port Said (A)	0	0	0	1-10 11-27 28-47 ≥48 All speeds	40 20 0 0 60	23 26 0 0 49	12 61 0 0 73	14 44 0 0 58	12 24 0 0 36	21 28 0 0 49	12 30 2 0 44	21 58 3 0 82	18 68 1 0 87	14 51 0 0 65	26 41 1 0 68	44 26 3 0 73	257 477 10 0 744
Tanta	14	0	0	1-10 11-27 28-47 ≥48 All speeds	45 0 0 0 45	51 0 0 0 51	52 0 0 0 52	61 0 0 0 61	39 0 0 0 39	25 7 0 0 32	54 8 0 0 62	88 18 0 0 106	66 14 0 0 80	78 12 0 0 90	44 2 0 0 46	63 3 0 0 66	666 64 0 0 736
Cairo (A)	39	2	14	1-10 11-27 28-47 ≥48 All speeds	49 9 0 0 5 8	48 12 0 0 60	62 11 0 0 73	27 10 0 0 37	16 6 0 0 22	18 12 0 0 30	21 56 7 0 87	36 61 1 0 98	32 14 0 0 46	33 24 0 0 57	49 14 0 0 63	51 7 0 0 58	445 236 8 0 689
Fayoum	11	0	0	1-10 11-27 28-47 ≥ 48 All speeds	8 0 0	156 4 0 0 1 60	19 0 0 0 19	11 0 0 0 11	13 0 0 0 13	48 0 0 0 48	81 16 0 0 97	57 10 0 0 67	58 13 0 0	23 19 0 0 42	17 0 0 0 17	25 0 0 0 25	663 70 0 0 733
Minya (A)	31	3	0	1-10 11-27 28-47 ≥48 All speeds	164 90 0 0 254	18 0 0 0 18	2 0 0 0 2	2 0 0 0	8 0 0 0 8	137 14 0 0 151	56 25 0 0 81	21 8 0 0 29	21 6 0 0 27	15 18 0 0 33	21 27 0 0 48	53 4 0 0 57	518 192 0 0 710

Table A 5 (contd)—NUMBER IN HOURS OF OCCURRENCE OF CONCURRENT SURFACE WIND SPEED AND DIRECTION RECORDED WITHIN SPECIFIED RANGES

MARCH — 1969

	calm (hours)	Variable (hours)	Unrecorded (hours)	Wind speed in knots	Number in hours of occurrences of wind blowing from the ranges of directions indicated												
Station					345 / 014	015 / 044	045 / 074	075 / 104	105 / 1 34	- 1	/		/	1	1	1	l š
Asyout (A)	5	0	0	1-10 11-27 28-47 ≥48 All speeds	8 2 0 0 10	9 0 0 9	31 0 0 0 31	45 2 0 0 47	48 7 0 0 55	23 26 1 0 50	22 49 7 0 78	10 24 3 0 37	42 21 1 0 64	125 48 2 0 175	67 46 0 0 113	32 38 0 0 70	462 263 14 0 739
Luxor (A)	12	0	0	1-10 11-27 28-47 ≥48 All speeds	32 1 0 0 33	42 0 0 0 42	28 0 0 0 28	24 0 0 0 24	33 0 0 0 33	33 5 0 0 38	68 13 0 0 81	35 14 0 0 49	58 20 0 0 78	95 20 0 0 115	107 21 0 0 128	63 0 0 0 63	638 94 0 0 732
Aswan (A)	0	14	0	1-10 11-27 28-47 ≥48 AT speeds	213 88 0 0 301	68 1 0 0 69	23 0 0 0 23	22 3 0 0 25	21 2 0 0 23	19 4 0 0 23	21 13 0 0 37	16 3 0 0 19	21 2 0 0 23	27 24 0 0 51	26 20 0 0 46	64 26 0 0 90	544 186 0 0 730
S:wa	6	0	3	1-10 11-27 28-47 > 18 All speeds	6 8 0 0 14	33 12 1 0 46	33 8 0 0 41	67 21 0 0 88	80 25 0 0 105	17 2 0 0 19	23 23 0 0 46	20 13 7 0 40	21 11 0 33	49 29 0 0 78	68 59 0 0 127	61 37 0 0 98	478 248 9 0 735
Dakila	10	2	4	1-10 11-27 28-47 ≥ 48 All speeds	17 8 0 0 25	18 1 0 0 19	35 0 0 0 35	83 0 0 0 83	47 0 0 0 47	49 0 0 0 49	91 6 0 0 97	40 7 0 0 47	53 6 0 0 59	51 21 0 0 72	67 31 0 0 98	59 38 0 0 97	610 118 0 0 728
Kharga	32	4	12	1-10 11-27 28-47 ≥48 All speeds	72 119 0 0 191	41 2 0 0 43	16 0 0 0 16	7 0 0 0 7	15 0 0 0 0 15	38 2 0 0 40	39 15 0 0 54	22 10 0 0 32	38 1 0 0 39	41 26 0 0 67	34 18 0 0 52	101 39 0 0 140	464 232 0 0 696
Hurghada	28	0	18	1-10 11-27 28-47 ≥48 All speeds	11 89 11 0	16 17 0 0 33	10 0 0 0 10	14 0 0 0 14	35 9 0 0 44	52 63 2 0 117	23 49 1 0 64	9 5 0 0 14	6 2 0 0 8	6 6 0 12	38 59 4 0	43 115 12 0 170	263 405 30 0 698
Quseir		0	0	1- 10 1127 2847 <u>>48</u> All speeds	25 56 0 0 81	29 3 0 0 32	12 0 0 0 12	42 4 0 0 46	50 0 0 0 50	62 16 0 0 78	42 3 0 0 45	24 1 0 0 25	21 7 1 0 29	56 44 0 0 100	83 27 0 0	46 72 3 0 121	492 233 4 0 729

Table B 1.—UPPER AIR CLIMATOLOGICAL DATA MARCH—1967

п	Pressure Surface (Millibar)	Alti	itude of Pre	ssure Surfac	e (gpm)		Tempe	Dew Point (*C)			
Station		N	Mean	Highest	Lowest	N	Mean	Highest	Lowest		Mean
Mersa Matruh 0000 U.T.	Surface	26 25 26 26 26 26 25 22 21 19 14 9 5 3 3 2	1008m.b. 103 1466 3067 4293 5692 7322 9342 10537 11964 13793 16317 18473 19412 50519 21248 23791	1016m.b. 162 1520 3156 4402 5823 7476 9492 106 7 12111 13906 16410 18555 19460 20581 21981	997m.b. 28 1331 2920 4118 5490 7019 9052 10290 11819 13654 16209 18400 19355 20485 21916 —	26 25 26 26 26 26 26 25 22 21 19 14 9 5 3 3 2	15.0 15.0 11.5 2.1 — 6.7 —16.7 —27.5 —43.7 —53.3 —57.6 —66.0 —68.7 —65.4 —62.0 —57.5 —60.0	23.2 23.3 22.5 10 0 — 1.6 —12.5 —24.9 —40.1 —49.9 —50.5 —50.0 —60.4 —62.7 —62.8 —60.6 —57.5 —	6.8 11.3 31	26 25 26 25 26 25 24 21 19 11 5 —	11.3 10.9 - 5.1 -13.5 -16.9 -26.6 -37.9 -52.6 -61.7 -63.6 -67.4
Helwan 0000 U.T.	Surface	31 31 31 31 31 31 30 30 28 25 22 22 18 18 15 9	996m.b. 97 1475 3081 4313 5716 7361 9360 10566 12021 13845 16338 18485 19410 20528 21913 23728 26318	# 1003m.b. 165 1544 3172 4416 5833 7496 9518 10738 12184 13969 16424 18620 19490 20637 22023 23853 26464	985m.b. 11 1422 2918 4143 5489 7101 9048 10240 11863 13736 16233 18310 19316 20433 21823 23616 26191	31 8 31 31 31 31 30 28 25 22 18 18 15 9	16.6 12.1 13.7 3.5 — 5.5 — 15.3 — 27.5 — 43.3 — 51.0 — 55.3 — 59.2 — 67.2 — 67.6 — 65.5 — 62.5 — 59.7 — 57.6 — 54.1	27 3 19.2 24.9 12.7 0.5 —11.5 —24.5 —39 0 —43.1 —45.1 —48 4 —58 8 —62.7 —60.0 —59.8 —58.1 —53.3 —52.0	10.7 10.6 1.8 - 9.7 -13.0 -21.4 -31.3 -47.8 -55.3 -65.0 -65.2 -71.3 -74.1 -73.0 -61.9 -60.5 -55.8	31 8 31 31 31 31 30 29 20 10 1 ———————————————————————————————	6.0 6.7 - 4.9 -11.7 -18.3 -26.0 -37.4 -51.7 -58.8 -61.9 -65.1 -64.5
Аѕwan 0000 U.T.	Surface	29 29 29 29 28 28 28 28 28 27 22 17 15 13 8	988m.b, 92 1500 3133 4384 5817 7498 9543 10783 12176 14061 16513 18604 19521 20632 22021 23827 26408	995m, b, 151 1585 3230 4492 5940 7635 9693 10922 12378 14163 16646 18750 19644 20746 22131 23949 26534	980m.b. 21 1428 3046 4284 5715 7408 9459 10686 12152 13973 16428 18480 19443 20553 21911 23727 26334	29 29 29 28 28 28 28 28 27 22 17 15 13 13 8	21.1 	30.0 	13.0 8.2 2.34.413.426.041.650.458.268.875.478.272.667.164.760.754.9	29	1.9 -3.3 -10.6 -20.7 -30.9 -30.5 -50.5 -57.1 -64.2 -70.8

N = The number of cases the element has been observed during the month.

^{*} The atmospheric pressure corrected to the elevation of the radiosonde station.

Table B 1 (contd.).—UPPER AIR CLIMATOLOGICAL DATA
MARCH—1969

***					ARUH-						
Station	Pressure Surface Millibar	Altitude of Pressure Surface (gpm)					Тетре	Dew Point (°C)			
		N	Mean	Highest	Lowest	N	Mean	Highest	Lowest	N	Mean
Mersa Matruh 1200 U.T.	Surface	27 26 27 25 22 20 20 20 19 16 11 9 5 3 2 1	* 1008m.b. 103 1473 3076 4291 5686 7330 9336 10555 11972 13802 16353 18545 19491 20626 22047	* 1016m.b. 163 1517 3196 4410 5842 7528 9579 10809 12148 13937 16460 18600 19540 20660 ————————————————————————————————	* 994m.b. 37 1367 2965 4122 5486 7078 9061 10289 11774 13666 16262 18485 19447 20591 — — — —	27 24 26 25 22 20 20 20 19 16 11 9 5 3 2	19.5 18.7 11 1 - 2 3 - 6.5 -16 3 -27 9 -42 3 -50 5 -55 0 -55 8 -60.6 -62.6 -62.0 -61.4 -57.7	30.1 30.0 23.9 11.4 0 3 - 9.6 -21.9 -37.5 -43.8 -45.3 -47.8 -53.6 -58.9 -59.2 -59.2	14.2 13-0 1.0 -8.0 -15.5 -24.6 -36.5 -45.7 -56.0 -63.5 -62.0 -65.4 -66.5 -63.8 -64.0	27 24 25 24 21 20 20 19 16 8 5 1	11.0 9.9 -3.5 -12.4 -19.5 -28.5 -40.4 -53.7 -60.7 -63.4 -66.1 -64.8 -
Helwan 1200 U. T.	Surface	28 28 28 27 27 27 27 26 25 24 21 17 12 9 8 7 6	994m.b. 97 1490 3097 4437 5734 7384 9395 10604 12056 13850 16400 18569 19505 20640 22031 23856 26489 —	** 1002m.b. 100 1552 3187 4429 5851 7512 9571 10804 12233 14026 16526 18670 19597 20735 22167 24025 26688	983m.b. 4 1365 2929 4132 5506 7110 9061 10292 11792 13686 16314 18460 19394 20554 21938 23759 26369	28 5 28 27 27 27 27 26 2.1 21 17 12 9 8 7 6	25.7 19.6 14.1 3.8 -5.1 -14.8 -27.1 -41.4 -49.6 -55.4 -57.2 -66.4 -67.1 -65.4 -61.8 -58.1 -54.2 -50.3	35.1 23.3 24.4 10.1 - 0.7 -10.0 -20.6 -31.9 -39.3 -45.4 -49.5 -64.9 -63.2 -56.3 -52.4 -51.8 -44.8	17.3 18.2 2.1 -5.0 -13.0 -22.7 -35.4 -47.1 -55.6 -69.4 -66.3 -77.9 -70.5 -68.6 -66.6 -61.3 -56.9 -52.1	28 5 28 27 27 27 27 26 25 21 12 2	5.0 7.9 -4.1 -12.7 -19.4 -29.4 -40.8 -54.8 -61.6 -66.1 -68.0 -70.6 -
Aswan 1200 U.T	Surface	28 28 28 28 28 27 27 26 26 26 23 16 14 12 11 6 5 4	988m.b. 81 1510 3148 4405 5840 7525 9584 10831 12306 14125 16600 18643 19630 20747 22198 24037 26666	995m.b. 150 1555 3204 4464 5916 7628 9704 10950 12406 14227 16698 18830 19737 20854 22271 24122 26790	982m.b. 28 1460 3069 4309 5739 7415 9428 10678 12178 14010 16509 18620 19533 20645 22119 23953 26261	28 28 28 27 27 26 26 26 23 16 14 12 11 6 5	32.5 20.4 8 9 0.3 9.4 21.9 36.0 43.3 52.6 61.7 69.8 70.1 62.9 62.4 55.3 53.9 48.4	40.0 28 0 13.3 4.6 -5.5 -17 6 -31.2 -38 7 -47.4 -54.9 -65.5 -66.0 -63.3 -56.7 -53.3 -52.1 -43.7	23 0 8.4 4.0 -4.8 -14.8 -28.9 -39 3 -47.8 -56 3 -68.8 -73.8 -75.6 -72.3 -69 5 -57.5 -56.7 -51.8	28	4.9 - 3.2 -13.0 -21.1 -30,2 -39.8 -51.3 -58.0 -65.4 -72.4

N = The number of cases the element has been observed during the month.

^{*} The atmospheric pressure corrected to the elevation of the radiosonde station.

Table B 2.—MEAN AND EXTREME VALUES OF THE FREEZING LEVEL AND THE TROPOPAUSE. THE HIGHEST WIND SPEED IN THE UPPER AIR

MARCH-1969

					Fr	eezing l	evel							First	Tropop	ause	•			Highe	est w	nd sp	eed
			Mean		1	Highest			Lowest			Mean]	Highest			Lo west		(iii	(-)		Knots
	Station .	Altitude (gpm)	Pressure (mb.)	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Allitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Direction (000-360)	Speed in K
		(N)	(N)	(N)							(N)	(N)	(N)										
ين	Meraa Matruh (A)	3266 (26)	686 (26)	-12.5 (23)	4270	606	-18.1	1860	805	-0.6	11165 (14)	230 (14)	-57.7 (14)	12450	189	-67.4	10250	258	-52.7	9150	304	290	150
0000 U.T.	Helwan	3455 (31)	671 (31)	-12.7 (31)	4490	595	-15.5	1620	834	-0.0	11210 (28)	231 (28)	-5 ₆ ·2 (28)	16252	100	-69.8	8880	307	-49.5	12930	173	280	145
	Aswan (A)	4296 (28)	606 (28)	-19.0 (28)	5030	556	-26.0	3690	650	-21.4	16485 (18)	104 (18)	-72·1 (18)	18940	66	-74 .0	13400	170	-65.0	14220	155	266	163
							}				(N)	(N)	(N)										
	Mersa Matruh (A)	3288 (23)	683 (23)	-12.7 (19)	4440	597	-9.9	1740	823	-2.0	11773 (13)	207 (13)	-57.2 (13)	13170	168	-65.1	10290	4 55	-51.9	12550	183	275	160
1200 U.T.	Helwan ,	3494 (27)	669 (27)	-13.9 (27)	4360	605	-16.8	2000	800	-3.3	11514 (22)	222 (22)	-55.7 (22)	14780	130	-64.8	10240	265	-48.7	12700	184	280	157
15	Aswan (A)	4481 (28)	595 (28)	-21.3 (28)	5120	550	-23.5	3870	638	-14.2	12912 (15)	117 (15)	-69.4 (15)	18910	67	-76.6	12700	187	-58.3	1116	204	247	168

N = The Number of cases the element has been observed during the month.

Table B 3.—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES. MERSA MATRUH (A)—MARCH 1969

				•	W	ind betwee	n ranges o	of directio	n (000-36	0)°			Calm	of (N) vind
Time	Ptessure Surface (Millibar)	345 / 014 (ff)	015 / 044 V (ff)	045 / 074	075 / 104	105 / 134	135 / 164	165 / 194	195 / 224	225 / 254	255 / 284	285 315 / 314 344 (ff) 2 (ff)	ber of winds	Total Number of Observations (T N) Mean Scalar wind Speed (Knots)
		N m	N m	N m	N m	N	N	N m	N m	N m	N m	N M N m	ž	Operation Topics
0000 U.T.	Surface	5 11 4 16 2 22 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 —	1 12 0	0 - 8 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0		3 12 5 18 0	1 9 0 0 0 0 0 0 0 0	1 18 1 25 1 17 1 43 0 0 0 0 0 0 0 0 -	1 11 45 1 26	0	5 12 6 29 6 36 8 41 13 49 17 56 9 66 6 69 4 65 3 83	3 16 2 10 7 23 6 1 8 32 2 2 2 5 62 0 -6 46 0 -3 86 0 6 76 1 6 5 75 0 -5 90 0 -1 88 0 -1 66 0	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26
1200 U.T.	Surface	2 14 0 1 15 0 0 0 0 0 0 1 1	3 12 1 13 0	1 19 2 17 0 0 0 0 0 0 0 0	3 12 2 15 11 19 0 0 0 0	0	1 10 1 20 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0	2 20 2 18 1 18 0	8 2 36 8 2 36 9 0	0 0 0 2 14 3 4: 1 76 1 105	0	4 21 10 1 7 27 3 2 8 28 2 3 5 38 2 3 4 40 1 3 7 61 0 3 5 85 1 3 4 119 1 3 2 98 1 3 1 104 0 3 0 0 3 3 <td>8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>25 19 25 24 23 36 20 44 19 64 14 84 12 95 7 99 3 89 1 67 </td>	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25 19 25 24 23 36 20 44 19 64 14 84 12 95 7 99 3 89 1 67

N = The number of cases the element has been observed during the month,

TN = The total number of cases the wind has been observed for all dirictions during the month,

TABLE B 3 (contd.)-NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALA WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES. HELWAN-MARCH 1969

								Wi	nd be	etweer	n rang	ges of	f dire	ction	(000	3 60))°						· · · · · · ·		Calm	in of	ind
Time	Pressure Surface (Millibar)	345 / 014	- [015 / 044	1	045 / 074		75 / 04	/)5 / 34	13 / 16	- 1	16 / 19	- (19 / 22	Í	22 / 25	ĺ	25 / 28	Ì	28 / 31		31 / 34		of ide	Total Number of observations (TN)	Nean Scalar wind Speed (Knots)
		N	(ff) m	N	m	N (ff	N	(ff)	N	(ff) m	N	(ff) m	N	(ff) m	N	(ff) m	N	(ff) m	N	(ff) m	N	(ff) m	N	(ff) m	Number wir	Total observa	Nean Speed
0000 U. T.	Surface	0 0 0 0 0 0 0 -	7 6 19 — — — — — — — — — — — — — — — — — —	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	13 14	6 111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		6	2 0 0 0 0 0 0 0 0 0 0	6	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8	1 0 2 0 0 0 0 0 0 0 0 0	8 -42	0 0 5 2 0 0 0 0 0 0 	30 43	2 1 7 12 14 7 5 0 0 0 9 —	31 37 52 73 63 —————————————————————————————————	1 0 9 12 10 11 5 4 3 2 1	13 -23 42 39 40 71 82 83 95 	1 0 3 2 1 1 2 1 1 1 1 0 0	7 27 43 60 63 75 99 101 — — — — — — — —	2 0 4 1 1 0 0 0 0 0 0	8 -23 25 61 	200000000000000000000000000000000000000	31 8 31 29 26 20 11 5 4 2 1 —————————————————————————————————	8 8 27 40 48 59 54 76 88 83 95 ———————————————————————————————————
1200 U. T.	Surface	1 1 0 0 0 0 0 0 0 0 0 	8 10 16 — — — — — — — — — — — — — — — — — —	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 1	1		-	2 0 0 0 0 0 0 0 0 0	4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		6 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 10 15	4 0 8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31	3 0 6 13 9 4 5 1 2 1 — — — — — — — — — — — — — — — — —	17 	2 1 4 6 7 10 6 3 1 1 —	14 25 21 42 46 61 77 66 72 105	5 1 4 5 5 3 1 2 1 0 —	12 9 15 38 51 53 62 38 ———————————————————————————————————	1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14 14 12 24	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	28 5 26 25 21 18 12 6 4 2 ————————————————————————————————	11 14 21 40 46 58 68 70 83 114 ——————————————————————————————————

N = The number of cases the element has been observed during the month,
TN ~ Total number of cases the wind has been observed for all directions during the month,

Table B 3.(contd)—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SCLECTED PRESSURE SURFACES ASWAN (A)—MARCH 1969

]			w	ind between	en ranges	of direction	n (000—36	0)°				Celm	y X	vind (s
Time	Pressure Surface (Millibar)	345 / 014	015	045	075 / 104	105 / 134	135 / 164	165 / 194	195 / 224	225 / 254	255 / 284	285 / 314	315 / 344	1 to 49	Total Number Observations (T	fean Scalar wind Speed (Knots)
	`	N (ff)	N (ff)	N (ff)	N (ff)	N (ff)	N (ff)	N (ff)	N (ff)	N (ff)	N (ff)	N (ff) m	N (ff)	Number win	Total Observ	Mean Spee
0000 U.T.	Surface 1000	11 8 8 : 10 1 29 1 47 0 - 0 - 0 - 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 - 0 0 0 0 - 0 0 0 0 - 0 0 0 0 - 0 0 0 0 - 0 0 0 0 - 0 0 0 0 - 0 0 0 0 0 - 0 0 0 0 0 - 0 0 0 0 - 0 0 0 0 0 - 0 0 0 0 0 - 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 - 0	4 5 -4 13 2 15 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 —	2 6 		0 — 1 14 — —	0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	1 12	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0	0	2 10 - 2 18 2 24 3 14 8 29 10 35 8 52 9 70 9 94 10 81 9 52 2 31 3 20 3 12 0	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	29	9 12 21 25 37 43 63 84 98 89 52 27 19 17 15 15 21
1200 U.T.	Surface	9 11 3 7 1 22 0 0	1 16 2 14 2 12 0	2 12 3 10 2 4 0	4 8 1 12 0 — 1 24 0 — 0 — 0 — 1 4 4 6 — 0 — 1 4 4 6 — 0 — 1 4 4 6 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 —	1 7 6 1 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 5 8 0 — 0 0 — 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0	- - - - - - - - - -	5 7 3 23 3 31 3 35 3 35 4 132 4 132 1 106 3 44 2 28 1 1 8 1 8 1 8	- - -	0 -	3 10 0 - 3 11 11 11 11 11 11 11 11 11 11 11 11 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	28 	8 -10 18 25 31 45 67 86 102 88 54 23 15 13 15 7

N = The number of cases the elemen thas been observed during the month.

TN = The total number of cases the wind has been observed for all directions during the month.

REVIEW OF AGRO-METEOROLOGICAL STATIONS

EL KASR-MARCH_1969

This month was warmer and more rainy than normal. The month was mainly charazed by changeable weather with respect to air temperature. Six Khamsin heat waves of short duration were experienced on the 1st,(4th—5th), (15th—16th), 18th, 24th and (26th—28th) respectively. The last heat wave was the longest and yielded the highest maximum air temperature for the month (38.4 °C) on the 26th. The break down of the heat waves was followed by cold spells. The lowest maximum air temperature for the month (17.0 °C) was reported on the 23rd.

The extreme maximum soil temperatures were higher than the corresponding values of last March at all depths between 2 and 100 cms. and the differences ranged between 0.3 °C at 5 cms. and 1.2 °C at 20 cms. The extreme minmum soil temperatures were higher than the corresponding values of last March at all depths except at 20 and 100 cms. depths where the values were lower by 0.4 °C and 0.2 °C respectively, the differences ranged between 1.7 °C at 5 cms. and 0.3 °C at 50 cms.

The daily mean Pan evaporation was 1.0 mm. less than the corresponding value of March 1968. The total actual duration of bright sunshine was 74.1 hours less than the corresponding value of March 1968.

TAHRIR-MARCH 1969

This month was warmer and more rainy than last March. The month was characterized by three pronounced khamsin heat waves during the periods: (1st—8th), (15th—18th) and (24th—31st). The last heat wave yielded the highest maximum air temperature for the month (39.2 °C) on the 26th. Two cold spells were experienced during the periods (9th—14th) and (19th—23rd). The second cold spell yielded the lowest maximum air temperature for the month (18.7 °C) on the 21st.

The extreme maximum soil temperatures were higher than the corresponding values of last March at all depths between 2 and 100 cms. and the differences ranged between 4.6 °C at 10 cms. and 1.8 °C at 100 cms. The extreme minimum soil temperatures were also higher than the corresponding values of last March at all depths, and the differences ranged between 1.3 °C at 5 cms. and 0,1 °C at 20 cms.

The daily mean Pan evaporation was 1.05 mm. more than the corresponding value of March 1968. The total actual duration of bright sunshine was 61.9 hours less the corresponding value of March 1968.

BAHTIM-MARCH 1969

This month was warmer and more rainy than last March. The month was characterized by three pronounced khamsin heat waves during the periods: (1st—7th), (15th—18th) and (25th—31st). The last heat wave yielded the highest maximum air temperature for the month (36.0 °C) on the 28th. Two cold spells occurred during the periods (8th—14th) and (19th—24th). The second cold spell yielded the lowest maximum air temperature for the month (19.3 °C) on the 19th.

The extreme maximum soil temperatures were higher than the corresponding values of last March at all depths between 2 and 100 cms. and the differences ranged between 0.9 °C at 2 cms. and 4.6 °C at 5 cms.

The extreme minimum soil temperatures were also higher than the corresponding values of last March at all depths and the differences ranged between 2.3 °C at 2 cms. and 0.3 °C at 10 cms.

The daily mean Pan evaporation was 0.83 mm. more than the corresponding value of March 1968. The total actual duration of bright sunshine was 35.3 hours less than the corresponding value of March 1968.

KHARGA-MARCH 1969

This month was warmer than normal and rainless. The month was characterized by three pronounced khamsin heat waves during the periods: (1st—9th), (16th—20th) and (25th—31st). The last heat wave yielded the highest maximum air temperature for the month (42.4 °C) on the 31st. Two cold spells occurred during the periods (10th—15th) and (21st—24th). The first cold spell yielded the lowest maximum air temperature for the month (24.4 °C) on the 14th.

The extreme maximum soil temperatures were higher than the corresponding values of last March at all depths between 2 and 100 cms. and the differences ranged between 8.2 °C at 2 cms. and 1.8 °C at 100 cms. The extreme minimum soil temperatures were also higher than the corresponding values of last March at all depths and the differences ranged between 3.1 °C at 2 cms. and 1.0 °C at 100 cms.

The daily mean Pan evaporation was 0.68 mm. more than the corresponding value of March 1968. The total actual duration of bright sunshine was 15.5 hours less than the corresponding value of March 1968.

Table C1.—AIR TEMPERATURE AT $1\frac{1}{2}$ METRES ABOVE GROUND MARCH—1969

		Air Te	mperati	re (°C)				Mean		n in ho				erature		
STA FION	Mean Max.	Mean Min.	Mean of the day	Night time mean	,	_5°C	0°C	5°C	10°C	15°C	20°C	25°C	3 0°C	35°C	40°C	45°C
El Kasr	22 3	11.7	16.7	14.7	18 8	24.0	24.0	24.0	23 1	15.2	2.8	1 3	0.6	0.2	0.0	0.0
Tanrir	26.3	11.6	18 2	15.1	21.3	24.0	24.0	24.0	22.6	16.1	7.5	3.4	1.1	0.4	0.0	0.0
Bahtim	26.2	9 9	17.9	14-4	21.3	24.0	24.0	24 0	21.4	15.2	7 9	3.6	1.1	0.0	0.0	ი.ი
Kharga	33.1	13 9	23 9	19-8	27.8	24.0	24.0	24.9	23 8	20.9	15 3	8.8	4.9	2.8	0.3	0.0
															Ì	

Table C 2.—ABSOLUTE VALUES OF AIR TEMPERATURE AT 12 METRES ABOVE GROUND, ABSOLUTE MINIMUM AIR TEMPERATURE AT 5cms ABOVE GROUND OVER DIFFERENT FIELDS.

MARCH-1969

	Max.	Temp. at	1½ metres	s (°C)	Min.	Temp. at	: 1½ metre	в (°С)	Min. Te	emp. at 5	cms. aho	ve (°C)
STATION	Higl	rest	Lov	rest	High	hest	Lov	vest	Dry	soil	Gra	188
	Value	Date	Value	Date	Value	Date	Value	Date	Value	Date	Value	Date
El Kasr	38.4	26	17.0	23	15.4	3	8.2	12	4.3	14		-
Tahrir	39.2	26	18.7	21	16. 1	25	5.9	12	3.7	12	_	_
Bahtim	36.0	28	19.3	19	15.4	25	2.6	12	0.2	12	_	_
Kharga	42.4	31	24.4	11	23.6	3 0	7.4	16	6.2	16	_	_
					İ							

Table C 3.—(SOLAR+SKY) RADIATION, DURATION OF BRIGHT SUNSHINE, RELATIVE HUMIDITY, VAPOUR PRESSURE AT 1½ METRES ABOVE GROUND, EVAPORATION & RAINFALL

MARCH - 1969

	Radia-	Durat Sunsh	ion of B	right urs)	Rel		Hun %	idity		Val	our pr	essure	(mms)			pora- mms)	Rai	nfall (n	me)
STATION	(Solar+Sky) R tion gm. cal	Total Actual monthly	Total Possible monthly	%	Mean of day	1200 U.T.	Lowest	Date	Mean of day	1200 U.T.	Highest	Date	Lowest	Date	Piche	Pan class A	Total Amou- nt Monthly	Max. Fall in one day	Date
]		Ī	1													1
El Kasr	352.9	195.5	371.4	53	74	61	12	26	10.3	10.5	14.5	6	4.1	27	6.4	6.41	19.9	8.1	21
Tahrir	452.0	209.9	371.9	56	62	42	8	26	9.0	8.8	15.1	2	2.8	27	8.0	7.50	6.2	2.7	18
Bahtim	455.7	211.3	371.9	57	61	40	14	26	8.7	8.7	15.9	1	4.1	27	7.4	6.57	7.8	3.5	18
Kharga		313.4	372.9	84	26	17	8	3.27. 28, 1	5.3	5.5	9.0	4	2.3	29	18.1	13.30	0.0	0.0	_
	.										1								

Table C 4.—EXTREME SOIL TEMPERATURE AT DIFFERENT DEPTHS (oms)
IN DIFFERENT FIELDS

MARCH - 1969

STATION	st (H) et (L)		Extre				(°C) in ths (cms.	dry field		Exti	гет, е в	oil te	mpera	ture (° lepths	(cms.)	grass i	ield
	Highest Lowest	2	5	10	20	50	100	200	300	2	5	10	20	50	100	200	300
El Kasr	H	31.3 11.1	27.6 11.1	24.6 11.8	21.4 13.8	20.0 16.7	19 3 17,4	23.4 23.0		_ _	 	-		_	_	_	
Tahrir	H L	43.5 12.3	36.5 12.3	32.8 12.4		23.7 17.6	21.3 19.2	20.8	21.5 20.9	 	_	-	_	_	_	_ _	_
Bahtim	H L	39.3 12.4	33.4 12.4	28.2 14.9	24.6 18.0		21.4 20.2	21.9	23.0 22.5	_	=			_	_	<u> </u>	=
Kharga	H	49 .8 11,3	42.1 14.2	35.6 18.2	30.8 21.5		25.8 23.5	25.7 24.5	26.6 26.4	_	_	_	_	_	_	-	_

Table C 5. SURFACE WIND

MARCH - 1969

		l Speed n			Days w	ith surfac	e wind sp	eed at 10	metres		Max, Gu at 10	it (kno ts) metres
STATION	Mean of the day	Night time mean	Day time mean	≥10 knots	≥15 konts	≥20 knots	≥25 knots	≥ 30 knote	≥35 knots	≥40 knots	value	Date
El Kasr	2.5	2.1	2.9	_	_	_		_	_		_	_
Tabriz	2.9	2.1	3.7	31	22	15	9	6	2	0	45	17.19
Bahtim	3 .0	2.3	8.7	31	19	12	8	3	0	0	43	17
Kharga	3.2	2.5	4.0	28	19	16	7	1	0	o	35	17.20

PRINTED IN U.A.R. BY THE GENERAL ORGANIZATION FOR GOVT. PRINTING OFFICES. CAIRO

ALY SULTAN ALY

UNDER-SECRETARY OF STATE Chairman of the Board of Directors

8825-1969-150 ex,

MONTHLY WEATHER REPORT

VOLUME 12

NUMBER 4

APRIL, 1969

U.D.C. 551. 506,1 (62)

METEOROLOGICAL DEPARTMENT

CAIRO

ATMOSPHERIC SCIENCES
LIBRARY

007 1 4 1971

U. S. Dept. of Commerce

PUBLICATIONS OF THE METEOROLOGICAL DEPARTMENT OF THE UNITED ARAB REPUBLIC—CAIRO

In fulfilment of its duties, the U.A.R. Meteorological Department issues several reports and publications on weather, climate and agrometeorology. The principal publications are described on this page.

Orders for publications should be adressed to:
"The Director General, Meteorological Department, Kubri-el-Qubbeh — CAIRO".

THE DAILY WEATHER REPORT

This report is issued daily by the Meteorological Department since the year 1901. It includes surface and upper air observations carried out by the relevant networks of the Republic at the principal hours of observations.

As from January 1968 this report was revised to include a condensed representative selection of surface and upper air observations besides the 1200 U.T. surface & 500 mb charts.

THE MONTHLY WEATHER REPORT

First issued in 1909, the Monthly Weather Report served to give a brief summary of the weather conditions that prevailed over Egypt during the month, with a table showing the mean values for few meteorological elements and their deviations from the normal values. From 1954 to 1957 this report was in a rapid state of development and extension resulting into a voluminous report on January 1958 giving surface, upper air, and agro-meteorological data for U.A.R.

As from January 1964, the Monthly Weather Report was pressed to give climatological data for a representative selection of synoptic stations.

THE AGRO-METEOROLOGICAL ABRIDGED MONTHLY REPORT

Gives a review of weather experienced in the agro-meteorological stations of the U.A.R. as well as monthly values of certain elements.

THE ANNUAL REPORT

This report gives annual values and statistics for the various meteorological elements, together with a summary of the weather conditions that prevailed during all months of the year.

CLIMATOLOGICAL NORMALS FOR EGYIT

A voluminous edition was issued in march 1968 which brings normals and mean values up till 1960.

METEOROLOGICAL RESEARCH RULLETIN

First issued in January 1969 on a bi-annual basis. It includes research works carried out by members of staff of "The Meteorological Institute for Research and Training" and the Operational Divisions of Meteorological Department.

TECHNICAL NOTES

As from October 1970, the Meteorological Department started to issue a new series of publications in the form of Technical Notes (non periodical) on subjects related to studies and applications of meteorology in different fields for the benefit of personnel working in these fields.

The first Technical Note I was issued in October 1970 on : Sandstorms & Duststorms in the U.A.R.

MONTHLY WEATHER REPORT

VOLUME 12 NUMBER 4

APRIL, 1969

U.D.C. 551. 506,1 (62)

CONTENTS

		PAGES
	General Summary of Weather Conditions	1-2
	SURFACE DATA	
Table	A1.—Monthly values of the Atmospheric Pressure, Air Temperature, Relative Humidity, Bright Sunshine Duration and Piche Evaporation	3
,,	A2.—Maximum and Minimum Air Temperatures	4
,,	A3.—Sky Cover and Rainfall	5
,,	A4.—Number of Days of Occurrence of Miscellaneous Weather Phenomena	6
,,	A5.—Number in Hours of Occurrences of Concurrent Surface Wind Speed and Direction Recorded Within Specified Ranges	7,8
	UPPER AIR DATA	
Table	B1.—Monthly Means and Monthly Absolute Higher & Lower Values of Altitude, air Temperature & Dew point at Standard and Selected Pressure Surfaces	9,10
"	B2.—Mean and Extreme values of The Freezing Level and The Tropopause; The Highest Wind Speed in The Upper Air	11
"	B3.—Number of Occurrences of Wind Direction Within Specified Ranges and The Mean Scalar Wind Speed at the Standard and Selected Pressure Surfaces	12-14
	AGRO-METEOROLOGICAL DATA	
	Review of Agro-Meteorological Stations	15-16
Table	C1.—Air Temperature at 1½ Metres Above Ground	17
,,	C2.—Aboslute Values of Air Temperature at 1½ Metres Above Ground, Absolute Minimum Air Temperature at 5 Cms. Above Ground Over Different Field.	17
,,	C3.—(Solar + Sky) Radiation, Duration of Bright Sunshine, Relative Humidity and Vapour Pressure at 1½ Metres Above Ground, Evaporation and Rainfall	17
,,	C4.—Extreme Soil Temperature at Different Depths in Different Fields	13
"	C5.—Surface wind	13

Note: For explanatory notes on tables please refer to volume 9 number 1 (January 1965).

GENERAL SUMMARY OF WEATHER CONDITIONS

APRIL 1969

Moderately changeable intervened with four short khamsin heat waves light rainy during the second third of the month-Frequent rising sand over the southern parts.

GENERAL DESCRIPTION OF WEATHER

The prevailing weather most days of this nonth was rather cold in the northern parts, all in the central parts and rather hot in the southern parts. The month was interveted by four short khamsin heat waves round the 9th, 15th, 20th and 24th. These heat waves were of light intensity, apart from the rest heat wave which was pronounced over Upper Egypt area in particular.

Light rain was reported over scattered parts a the Republic during the period (10th — 7th).

Rising sand occurred during many days of the month over scattered places in the Western Desert, Upper Egypt and Red Sea districts.

PRESSURE DISTRIBUTION

The most outstanding features of pressure listribution over the synoptic surface maps uring this month were:

- The Siberian anticyclone.
- The Atlantic anticyclone and its southast extension through the Mediterranean and North Africa.
- Deep low pressure systems through North Europe, followed sometimes by local inticyclones.

—Secondary depressions through the Mediterranean and its vicinities, and khamsin secondaries near the coast of North Africa.

During this month, five khamsin secondaries generally of weak intensity were distinguished, four of which traversed the northern parts of the Country.

The first and second khamsin depressions developed over North Algiers on the 1st and 4th respectively. The first depression moved quickly eastwards passing through northern parts of U.A.R. on the 3rd; whereas the second depression remained quasistationary till the 6th, then it moved slowly near the coast of North Africa and passed through northern parts of U.A.R. on the 9th.

On the 13th a depression developed over North Italy and a khamsin secondary near the Gulf of Cyranica. The two depressions proceeded eastwards forming one system on the 15th over Greece, East Mediterranean and Asia Minor, which traversed these areas on the 16th and continued its track afterwards to the northeast while amalgamating and filling.

The fourth khamsin depression originated near Tunisia on the 20th, proceeded along the coast of North Africa and passed through north of U.A.R. on the 24th.

The fifth and last khamsin depression during this month originated on the 26th over North Algiers. It remained quasistationary till the 27th, then it moved slowly northeastwards reaching west of Italy on the 30th, when a desert secondary developed south of Gulf of Serte.

The passage of the above mentioned khamsin secondaries through the country was followed by the establishment of high pressure over East Mediterranean and NE Africa. Accordingly the barometric pressure over the country showed five oscillations of moderate amplitudes, with their maxima round the 2nd, 5th, 13th 19th, 26th and their minima round the 4th, 9th, 16th, 24 and 29th.

The most important pressure system's over the synoptic upper air charts during this month were:

- Deep upper lows over North Russia and North Atlantic.
- Secondary upper troughs or lows through the middle latitudes, passing through East Mediterranean and north of U.A.R. on the 1st, 5th, 12th, 17th, 21st and 29th respectively.

SURFACE WIND

The prevailing winds during this month blew generally from directions between NW, NE and changed to SWly by the passage of khamsin depressions. Winds were light to moderate in general; they became fresh to strong during several days mainly over the Mediterranean and Red Sea districts.

Gales were reported at Aswan on the 1st, 9th, 12th and 15th, and at Hurghada on the 1st and 12th.

Cairo, April 1971

TEMPERATURE

Maximum air temperature was below normal most days of this month, and the departures from normal were moderate in general and rather large on few days. During the short khamsin periods, maximum air temperature was above normal and the departures were slight to moderate. Maximum air temperature values ranged generally between 18 °C & 23 °C in the northern parts, between 24 °C & 30 °C in the middle parts and between 30 °C & 38 °C in the southern parts.

The absolute maximum air temperature was 43.6 °C recorded at Aswan on the 9th.

Minimum air temperature fluctuations were not regular, it oscillated round normal and the departures were slight to moderate in general. Minimum air temperature values ranged generally between 8 °C & 15 °C in the northern and middle parts and between 14°C and 18°C in the southern parts.

The absolute minimum air temperature was 5.5 °C recorded at Beni Suef on the 3rd.

PRECIPITATION

A rainy period was distinguished from the 10th till the 17th over scattered parts in the Republic. Rain was generally light, but it was locally heavy over Sallum on the 14th when the daily rainfall reached 27.0 mm. reporting a record for April.

The monthly rainfall showed variant small departures from normal. In general, it was below normal in the northern parts and above normal in the central and southern parts.

The highest daily rainfall was 27.0 mm recorded at Sallum on the 14th.

The highest monthly rainfall was 32.4 mm. recorded at Sallum.

M. F. TAHA

Under Secretary of State
Director General
Meteorological Department

Table A 1. — MONTHLY VALUES OF THE ATMOSPHERIC PRESSURE, AIR TEMPERATURE, RELATIVE HUMIDITY, BRIGHT SUNSHINE DURATION & PICHE EVAPORATION.

APRIL 1969

		ic Pressure				Air T	emperatu:	e C				Relat			ight Sunsh		
	(m þs)	M.S.L	Maxim	um	Minin	num		Dry 1	Bulb	Wet	Bulb	Humid	ity %	Dur	ation (Ho	urs)	Piche
STATION	Mean	D.F. Normal or Average	(A) Mean	D.F. Normal or Average	(B) Mean	D.F. Normal or Average	A+B 2	Mean	D.F. Normal or Average	Mean	D.F. Normal or Average	Mean	D.F. Normal or Average	Total Actual	Total Posible	%	Evap- (mms) Mean
allum	1015.2 1015.5 1015.3 1014.2	+1.8 +4.1 +1.2 +0.5	20.9 20.3 22.6 21.1	-2.8 -2.4 -1.2 -1.4	13.7 11.9 13.0 15.0	+0.2 -0.1 -0.4 -1.8	17.3 16.1 17.8 18.0	16.9 16.1 17.2 17.6	-2.0 -1.2 -1.0 -1.2	13.0 13.2 13.5 14.5	-0.8 -0.2 -1.1 -1.0	62 70 63 69 —	$\begin{vmatrix} + & 6 \\ + & 6 \\ - & 3 \\ - & 1 \\ - & - \end{vmatrix}$	279.8 271.8	388.8 388.2 —	72 70	10.0 5.8 6.9 6.7
Cairo (A)	1014.7	+2.0 +0.7	25.4 26.1	$\begin{bmatrix} -2.4 \\ -2.1 \end{bmatrix}$	11 2	+0.4 -0.6		17.5	-1.2 -1.5	12.9 13.3	-1.0 -1.2	56 46	+ 2	292.2	387.8	75 —	5.6 16 4
Fayoum (A) Minya (A) Assyout (A) Luxor (A) Aswan (A)	1013.6	 +0.9 +1.5 +1.1 +1.2	27.9 27.9 28.5 33.1 34.0	-1.8 -2.7 -3.3 -1.5 -1.1	12.6 12.3 14.3 15.9 18.0	$\begin{vmatrix} -0.6 \\ +0.4 \\ -0.6 \\ +0.3 \\ +0.3 \end{vmatrix}$	20.0 21.4 24.5	20.2 20.3 21.3 24.4 25.9	-1.1 -0.9 -2.5 -1.4 -0.9	13.8 13.5 13.6 15.0 13.7	$ \begin{array}{r} -0.3 \\ -0.4 \\ +0.3 \\ -0.1 \\ +0.4 \end{array} $	45 42 37 31 18	$\begin{vmatrix} +5 \\ +1 \\ +13 \\ +5 \\ +6 \end{vmatrix}$	264.2	285.1	69	7 0 11.6 15.7 9.3 24.0
Siwa Bahariya Farafra Dakhla Kharga	1013.7 1015.0 1013.7	$\begin{vmatrix} +0.4 \\ +1.3 \\ +1.1 \\ +2.5 \\ +1.3 \end{vmatrix}$	26.8 27.6 27.9 30 1 31.3	$\begin{vmatrix} -3.0 \\ -2.4 \\ -3.3 \\ -2.7 \\ -2.0 \end{vmatrix}$	13.3 12.7 13.4	+0.9 +0.5 -0.6 -1.1	20 4 20.3 21.8	20.0 20.4 20.2 22.5 23.6	+1.6 -2.0 -2.5 -1.4 -1.2	12.9 12.6 12.9 12.7 13.1	$ \begin{array}{c} -0.2 \\ -0.7 \\ +0.3 \\ +0.1 \\ -0.5 \end{array} $	34 38 27	$\begin{vmatrix} + & 7 \\ + & 5 \\ + & 15 \\ + & 9 \\ 0 \end{vmatrix}$	265.4	382.8	69	13.0 9.7 16.4 16.6 18.3
Tor	. 1011.5	+0.6 +1.0	25.3 26.0	-1.0 -1.2		+0.8 -0.5		21.9 22.8		16.3 16.7	 +0.6 +0.1		+ 6 + 6	= =	=	=	15.1 14.7

ن ا

Table A2.- MAXIMUM AND MINIMUM AIR TEMPERATURES

APRIL - 1969

			Ma	aximum !	rempera	ture °C)			Grass Tem				Minim	um Temp	erature	°C		
Station	Highest	ęş.	est	ę.	No.	of Day	s with	Max-Te	m p.	Mean	Normal	Highest	Date	/est	Date	N	o. of D Min. I	-	h
	Higl	Date	Lowest	Date	>25	>30	>35	>40	>45	W	D. From	Hig	Ω	Lowest	Ã	<10	< 5	<0	<-5
Sallum	29.4 29.7 33.1 26.0	19·30 30 24 24 —	16.4 17.2 18.4 18.2	14 11 1 12 —	4 3 7 20 —	0 0 1 0 -	0 0 0 0 -	0 0 0 0 -	0 0 0 0 -	13.3 13.3 14.1		16.9 15.1 16.4 17.4	23 27 24 24 	10.1 9.2 8.4 12.5	3 22 18 17 —	0 3 1 0 —	0 0 0 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 -
Tanta	32.6	24	19.6	12	17	3	0	o	0	-	_	15.2	24	9.0	5,18	7	o	o	0
Cairo (A)	33.3	24	19.9	1	18	5	0	0	0		_	18.8	24	9.8	4,13	2	0	0	0
Fayoum Minya Assyout Luxor Aswan (A)	41.6	24 9 9 9	21.6 21.8 22.0 23.0 26.2	1 1 1.12 16 17	24 22 22 29 30	7 9 11 24 25	0 0 2 10 13	0 0 0 1 1 1	0 0 0 0	10.9 10.6 12.5 13.3		17.2 20.0 20.5 23.0 25.0	15 9 24 15 10	6.9 7.0 9.0 9.3 11.7	18 2 2 25 18	5 7 2 2 2 0	0 0 0 0	0 0 0 0	0 0 0 0
Siwa Bahariya Farafra Dakhla Kharge	34.2 35.6 39.3	3 30 30 9 9	17.9 21.0 21.2 23.1 22.8	2 1 2 1 16	20 21 23 26 27	8 8 10 15 18	0 0 5 4 5	0 0 0 0 1	0 0 0 0 0	11.5 12.4 11.9 — 14.7		18.7 20.3 21.4 22.2 23.2	8 9,24 9 9	9.5 8.4 5.9 5.8 9.2	1 2 18 2 16	4 5 5 7 2	0 0 0 0	0 0 0 0	0 0 0 0
Tor	31.1	25 25 25	22.1 21.5	12 2	19 19	1 2	0 0	0 0	0 0	17.5	- - -	21.6 23.5	9 15	12.5 15.0	5 17	0 0	0 0	0 0	0

Table A 3. SKY COVER AND RAINFALL

APRIL -- 1969

		Mean S	Sky Cover	Oct.					Rain	ıfall mı	ns.					
Station	00	06	12	18	Daily	Total	D. From	in on	. Fall e day	, N	lumher	of Day	with A	Amount	of Rain	n
	U.T.	U.T.	U.T.	U.T	Mean	Amount	Normal	Amount	Date	<0.1	≥0.1	≥ 1.0	≥5 0	≥:0	≥25	≥ 50
Sallum (A) Mersa Matruh (A) Alexandria (A) Port Said (A) El Arish (A)	3 9 3 2 4 6	4 1 4 6 4 8 3 9	4 0 4 5 4 9 3.0	3.4 4.1 4.4 —	3 8 4.0 4.6	32.4 2.2 0 1 1.0	+31 3 0 3 3 0 2.1	27.0 1.8 0.1 0.5	14 14 16 14.16	0 0 1 0 -	5 3 1 2	4 1 0 0	0 0	1 0 0	1 0 0	0 0 0 0
Tanta	0.9	2 8	3 1	 1 4	2.2	1.1	- 1.0	1.1	15	0	1	1	0	0	0	0
Cairo (A)	2.8	3 9	3 4	2 8	3.3	1.1	+ 0.3	0.7	11	1	2	0	0	0	0	0
Fayoum (A) Minya (A) Assyout (A) Luxor (A) Aswan (A)	2.6 2.2 2.0 1.2	3 7 3 2 2 4 2 4 1 9	3 5 3 1 2 9 3 2 2 0	2.6 2.7 2.4 2.7 2.0	2 8 2 5 2 5 2 5 1 9	Tr. 2.0 3.5 Tr. Tr	0.7 + 1.6 + 3.5 + Tr. 0.0	Tr. 1.0 2.5 Tr. Tr.	11,15 11 14 12.13.14 16	2 3 2 3 1	0 2 2 0 0	0 2 2 2 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 9
Siwa . Bahariya	2.4 2.2 0.9 1.2	3.0 3.3 3.0 1.7 2.4	3.7 3.0 3.3 2.3 2.9	2 3 2.3 2 4 2 0 2 3	2.9 2.8 - 1.2 2.1	2.8 Tr. 6,2 5.9 2.3	$\begin{array}{ c c c c }\hline + 1.9 \\ - 0.5 \\ + 6.1 \\ + 5.9 \\ + 2.3 \\\hline\end{array}$	1.3 Tr. 4.7 4.9 1.5	2,11 11,14,15 * 11 15 15	2 4 0 0 0	3 0 3 2 8	2 0 2 2 1	0 0 0 0 0	0 0 0 0	0 0 0	0 0 0
Tor	1.8 2.1	2.6 2.7	3.4 2.5	2 4 2 9	2.6 5.6	3.3 0.6	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.7	15 16	3 4	3 1	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$	0 0	0 0	0 0	- 0 0

* more than three days.

Table A 4. - DAYS OF OCCURRENCE OF MISCELLANEOUS WEATHER PHENOMENA.

APRIL 1969

		Precip	ritation			ą.	metres	tros	g tres	Via tres	erising fetres	Sandstorm 000 Metres			
Station	r sin	Sno₩	Ice, Pellets	Hail	Frost	Thunderstorm,	Mist Vie > 1000	Fog Vis	Haze Vis ≥ 1000 Metres	Thick Haze Vis	Dust or Sanderising Vis > 1000 Metres	Dust or Sandstorm Via <1000 Metres	Gale	Clear Sky	Cloudy Bky
Sallum Mersa Matruh (A) Alexandria (A) Port Said (A) El Arish Ghazza	5 3 1 2 —	0 0 0 0	0 0 0	0 0 0 -	0 0 0 -	0 0 0 -	0 2 0 —	0 0 0 0 —	0 1 2 0	0 0 0 0 —	3 2 4 0 —	0 0 0 -	0 0 0 0 	7 4 3 —	3 4 —
Tanta	1	0	0	0	0	0 0	0	0	0	0	0	0	0	15 8	0
Cairo (A) Fayoum Minya Assyout Luxor Aswan	2 0 2 2 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 1 1 0	0 0 0 0	0 2 3 12 0	0 0 0 0	0 6 5 3 12	0 0 0 0 0 9	0 0 0 0 4	15 15 15 15 19	- 0 0 0
Biwa Babariya Farafra Dakhla Kharga	3 0 3 2 3	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 0 0 1	0 0 0 0	3 2 4 1 11	0 0 0 0	0 0 0 0	13 16 — 18 16	4 4 1 3
Tor	3 1	0 0	0 0	0	0 0	0 0 0	- 0 0	- 0 0	5 2	 0 0	15 2	0 0	2 0	13 22	2 0

Table A 5.—NUMBER IN HOURS OF OCCURRENCES OF CONCURRENT SURFACE WIND SPEED AND DIRECTION RECORDED WITHIN SPECIFIED RANGES APRIL — 1969

	ê	ur8)	ours)] :	Numb	er in					of w			g fro	m th	10
Station	calm (hours)	Variable (hours)	Unrecorded (hours)	Wind speed in knots	345 / 014	1	045 / 074	075 / 104	11	1		1	[/	1	/	1	Į.
Sallum	4	0	0	1-10 11-27 28-47 ≥48 All speeds	46 7 0 0 53	50 5 0 0 55	175 21 0 0 196	69 12 0 0 81	65 1 0 0 66	22 0 0 0 22	9 2 0 0	8 0 0 0 8	13 9 0 0 22	10 19 0 0 29	26 30 1 0 57	68 48 0 0	561 154 1 0 716
Meras Matruh . (A)	1	0	0	1-10 11-27 28-5 ≥48 All speeds	47 137 0 0 184	39 52 0 0 91	25 40 0 0 65	26 14 0 0 40	44 40 0 0 84	26 10 0 0 36	10 7 0 0 17	11 5 0 0 16	9 14 0 0 23	23 17 4 0 44	5 15 1 0 21	23 72 3 0 98	288 423 8 0 719
Alexandria (A)	0	1	n	1-10 11-27 28-47 ≥48 All speeds	55 33 0 0 38	74 13 0 0 87	43 4 0 0 47	27 1 0 0 28	31 0 0 31	22 3 0 0 25	6 1 0 0 7	5 10 0 0 15	7 33 0 0 40	29 9 0 0 38	86 38 0 0	139 50 0 0 189	524 195 0 0 719
Port Said (A)	l	0	()	1-10 11-27 28-47 ≥48 All speeds	57 48 0 0 105	51 55 0 0 10 6	26 62 0 0 88	10 25 0 0 35	4 0 0 8	4 0 0 0	10 1 0 0	10 5 0 0 15	20 21 0 0 41	10 48 2 0 60	34 80 0 0	55 77 0 0 132	291 426 2 0 719
Tenta	21	O	v	1-10 11-27 28-47 ≥48 All speeds	102 5 0 0 107	57 3 0 0 60	49 3 0 0 52	22 0 0 0 22	14 0 0 14	9 0 0	14 0 0 0 14	53 6 0 0 59	72 8 0 0 80	89 11 0 0 100	76 14 0 0 90	87 5 0 0 92	644 55 0 0 699
Cairo (A)	3 3	. 0	2	1 ·10 11-27 28-47 ≥48 All speeds	71 31 0 0	105 35 0 0 140	77 59 0 0	46 12 0 0 58	9 8 0 0	3 0 0 3	12 2 0 0 14	9 13 0 0 22	11 10 0 0	30 17 0 0 47	35 12 0 0 47	76 22 0 0 98	484 201 0 0 685
Fayoum	8	9	0	i -10 11 -27 28 -47 ≥48 All speeds	263 0 0 0 263	205 3 0 0 2 6 8	32 1 0 0 33	8 0 0 8	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0 0 0 6	11 1 0 0 12	18 2 0 0 20	36 6 0 0 42	28 9 0 0 37	23 0 0 0 23	41 0 0 42	680 23 0 0 703
Minya (A)	37	8	0	1-10 11-27 28-47 ≥48 All specds	245 166 0 0 411	35 9 0 0 44	11 0 0 12	4 0 0 0 4	4 0 0 0 4	14 0 0 0 14	16 1 0 0 17	8 3 0 0 11	16 1 0 0 17	18 4 0 0 22	28 14 () 0 42	69 8 0 0 77	468 207 0 0 675

Table A 5 (contd.)—NUMBER IN HOURS OF OCCURRENCE OF CONCURRENT SURFACE WIND SPEED AND DIRECTION RECORDED WITHIN SPECIFIED RANGES

APRIL — 1969

	ĵg.	urs)	lours)			Num	ber i	n hou			rrence lirecti				ing fr	om t	he
Station	calm (hours)	Variable (hours)	Unrecorded (hours)	Wind speed in knots	345 / 014	1	1	1	1	1	1	1	1	1	1	1	All directions
Asyout (A)	1	0	0	1-10 11-27 28-47 ≥48 All speeds	31 19 0 0 50	11 8 0 0 19	7 0 0 0 7	20 1 0 0 21	19 1 0 0 20	3 0 0 0 3	13 2 0 0 15	7 4 0 0	29 8 0 0 37	174 9 0 0 183	144 38 0 0 182	91 80 0 0	549 170 0 0 719
Luxor (A)	0	1	0	1-10 11-27 28-47 ≥48 All speeds	47 0 0 0 47	26 0 0 0 26	11 0 0 0 11	26 0 0 0 26	18 0 0 0 18	66 1 0 0 67	73 1 0 0 74	45 1 0 0 46	42 3 0 0 45	89 6 0 0 95	142 52 0 0 194	63 7 0 0 70	648 71 0 0 719
Aswan (A)	1	2	2	1-10 11-27 28-47 ≥48 All speeds	187 218 0 0 405	61 53 0 0	11 0 0 0 11	2 0 0 0 2	6 0 0 0 6	4 0 0 0 4	6 2 0 0 8	1 1 0 0 2	2 2 0 0 4	10 2 0 0 12	9 5 0 0	75 58 0 0	374 341 0 0 715
Siwa	4	0	7	1-10 11-27 28-47 ≥48 All speeds	20 4 0 0 24	48 9 0 0 57	78 34 0 0 112	108 28 0 0 136	77 29 0 0 106	33 19 0 0 52	15 4 0 0	11 0 0 0 11	13 0 0 0 13	44 9 0 0 53	36 45 0 0 81	29 16 0 0 45	512 197 0 0 709
Dakhla	5	1	0	1-10 11-27 28-47 ≥48 All speeds	29 20 0 0 49	29 10 0 0 39	44 2 0 0 46	35 0 0 0 0 35	38 0 0 0 38	26 0 0 0 26	43 0 0 0 43	22 0 0 0 22	31 0 0 0 31	91 2 0 0 93	97 21 0 0 118	112 62 0 0 174	597 117 0 0 714
Kharga	- 1	3	5	1-10 11-27 28-47 ≥48 All speeds	118 193 0 0 311	58 13 0 0	15 0 0 0 15	5 0 0 0 5	3 0 0 0 3	5 0 0 0 5	4 0 0 0 4	4 0 0 0 4	6 1 0 0 7	14 0 0 0 14	31 14 0 0 45	137 87 0 0 224	400 308 0 0 708
Hurghada	15	0	8	1–10 11–27 28–47 ≥48 Ali speeds	21 190 27 0 238	45 24 0 0 69	17 1 0 0 18	6 2 0 0 8	14 5 0 0 19	23 3 0 0 26	18 2 0 0 20	0 0 0	1 0 0 0	3 0 0 0 0 3	18 34 0 0 52	65 164 14 0 243	231 425 41 0 697
Quseir	4	1	3	1-10 11-27 28-47 ≥48 All speeds	23 0 0 0 23	14 0 0 0 14	15 0 0 0 15	25 0 0 0 35	29 0 0 0 0	15 0 0 0 15	10 0 0 0 10	22 2 0 0 24	99 2 0 0 101	93 58 2 0 153	85 157 2 0 244	46 13 0 0 59	476 232 4 0 712

UPPER AIR CLIMATOLOGICAL DATA

Table B1 — MONTHLY MEANS AND MONTHLY ABSOLUTE HIGHER & LOWER VALUES OF ALTITUDE, AIR TEMPERATURE & DEW POINT AT STANDARD AND SELECTED PRESSURE SURFACES

APRIL-1969

Surface Surface Columbia N Mean Highest Lowest N Highest Lowest Lowest Lowest Highest Lowest N Highest Lowest N Highest Lowest N Highest Lowest Lowes												
Surface 27 101 m.b. 104 m.b. 27 15.2 17.0 13.0 27 10.2	ation		Alt	itude of Pre	ssure Surfac	e (gpm)		Tempe	erature (°C)		Dew Po	oint (°C)
1000 27 1446 1534 1414 27 10.2 27 2.0 12.4 27 10.2 10.2 10.0 10	St	(Millibar)	N	Mean	Highest	Lowest	N	Mean	Highest	Lowest	N	Mean
1000	Mersa Matruh 0000 U.T.	1000	27 26 24 23 22 19 16 15 13 4 4 4	124 1486 3073 4299 5699 7345 9350 10567 12017 13857 16375 18562 19516 20653 22034	173 1534 3128 4368 5765 7430 9473 10709 12179 14005 16486 18600 19578 20720 22110	62 1414 2998 4204 5590 7219 9205 10410 11873 13748 16262 18500 19443 20577	27 27 26 24 23 22 19 16 15 13 8 4 4 4 3	14.7 8.6 1.7 6.0 15.8 27.3 41.9 49.6 54.5 57.5 64.0 62.8 60.4 60.7 62.0 55.7	20.5 17.1 5.4 -2.2 -12.1 -23.7 -37.0 -45.2 -48.7 -49.3 -60.0 -59.1 -58.5 -60.0 -61.3	12.4 2.2 -2.7 -11.4 -18.9 -30.9 -46.5 -54.1 -61.8 -62.6 -70.6 -66.7 -62.3 -62.3	27 27 26 23 22 22 18 15 9 3 1	10.2 2.0 12.6 21.2 29.6 40.1 52.5 60.3 62.3 65.0 72.4
Here the second state of t	Helwan 0000 U.T.	1000	27 27 27 26 26 25 25 22 22 18 18 16 14	118 1487 3082 4313 5724 7378 9395 10615 11976 13896 16404 18554 19488 20615 21996	157 1546 3134 4369 5794 7472 9526 10762 12224 14063 16540 18660 19588 20726 22107 23917 26494	68 1431 3008 4205 5584 7212 9218 10447 11929 13780 16289 18450 19345 20513 21883 23681	7 27 27 27 26 26 25 25 25 22 20 18 15 14 13	14.9 10.4 2.8 - 4.4 -14.3 -25.9 -40.7 -49.3 -54.1 -57.6 -66.2 -65.8 -64.3 -63.0 -61.4 -58.3	19.3 18.2 7.8 	11.0 2.0 - 4.8 -11.9 -17.7 -30.6 -46.7 -54.2 -63.1 -64.1 -74.7 -71.1 -70.8 -65.8 -64.4 -60.0	7 27 26 27 26 25 25 25 18 14 —————————————————————————————————	6.0 - 3.1 -13.9 -18.6 -25.5 - 37.4 -49.8 -66.9 -62.4
	ם	1000	29 29 29 29 29 29 27 24 24 22 21 16 13 13 9 8	89 1496 3132 4389 5826 7579 9579 10825 12300 14133 16584 18674 19604 20718 22080 23892 26522	142 1526 3181 4452 5895 7611 9698 10968 12460 14290 16689 18780 19697 20809 22159 23980 26617	26 1462 3078 4320 5744 7385 9397 10629 12093 13972 16488 18428 19499 20602 22030 23756	29 29 29 29 29 27 24 24 22 21 16 13 13 9	18.9 8.7 0.3 	27.0 13.9 5.1 - 5.4 -17.9 -30.4 -39.7 -48.2 -56.3 -62.0 -66.8 -63.6 -60.4 -57.4 -53.1 -47.4	7.8 4.7 - 3.5 -15.1 -28.5 -41.0 -48.8 -58.2 -68.8 -79.1 -76.0 -71.2 -67.8 -62.8 -59.0	1.9 29 29 29 28 26 23 22 4 —	

N = The number of cases the element has been observed during the month.

^{*} The atmospheric pressure corrected to the elevation of the radiosonde station.

Table B 3.—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES.

MERSA MATRUH (A)—APRIL 1969

		Wind between ranges of direction (000-360)°	wind
Time	Ptessure Surface (Millibar)	Wind between ranges of direction (000-360)° 345	Soalar ad (Kno
ED 0000	Surface 1000 850 700 600 500 400 250 206 150 100 70 60 50 40 30 20 10	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 14 18 25 34 43 59 88 90 81 49 30 18 8 12 20
1200 U.T.	Surface	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14 16 16 26 35 48 65 88 88 82 60 48 29 22 25

N = The number of cases the element has been observed during the month,

TN = The total number of cases the wind has been observed for all dirictions during the month

Table B 3 (contd.)—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALA WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES.

HELWAN-APRIL 1969

								7	Vind	betwee	en rai	nges o	of dir	ection	(00	036	0)•					••	-		g	¥ 2	ng .
Time	Pressure Surface (Millibar)		345 / 014		15 / 944	045 / 074		075 / 104		105 / 134		35 / 64		65 / 94		95 / 24		25 / 54		55 / 84		85 / 14		15 / 44	ber of Calm winds	Number of	Nean Scalar wind Speed (Knots)
		N	(ff)	N	(ff) m	N	f) 1	N (ff m	N	(ff) m	N	(ff)	N	(ff)	N	(ff)	N	(ff)	N	(ff)	N	(ff)	N	(ff) m	Number wir	Total N	Nean S Speed
0000 U. T.	Surface	9 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0	6 14 26	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6	0 0 0	177	2			000000000000000000000000000000000000000		0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4	1 0 0 6 4 2 3 3 3 3 3 2 1 — — — — — — — — — — — — — — — — — —	18 36 34 43 61 78 50 32 — — — — —	0 0 5 7 8 3 3 1 1 1 3 2	25 30 36 53 47 91 55 82 78 68 —	0 0 7 11 8 5 4 1 5 0 0 		2 0 4 3 4 5 3 3 0 0 0 0 0	0 -11 29 52 60 52 60 	2 1 7 1 0 0 0 0 0 0 0 -	8 11 16 57	2 1 0 0 0 0 0 0 0 0 0 0	27 7 27 27 23 20 13 10 9 9 5 3	8 8 18 32 37 49 51 62 58 74 67 56 —
1200 U. T.	Surface	5 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 10 10 	2 1 2 1 1 0 0 0 0 0 0 0 	11 12 10 6 2 	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	_ · _ · _ ·	2 0 0	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2 1 2 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0	4 6 6 30 	2 0 1 3 4 3 1 1 2 1 1 1 0 0	4 22 30 21 27 46 59 73 90 — — — —	1 1 4 4 7 4 5 3 3 3 4 2 0 — — — — — — — — — — — — — — — — — —	4 9 26 15 33 26 56 50 61 66 132 —	1 0 1 11 8 7 4 3 1 1 2 1 — — — — — —	20 13 35 47 74 75 71 89 101 86 33 — — —	5 0 4 3 3 3 7 4 1 1 1 0 0 — — — — — — — —	13 16 16 51 52 76 67 84 50 —	6 0 4 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 	000000000000000000000000000000000000000	27 4 27 25 23 21 16 9 7 4 1	9 9 13 27 37 25 60 61 75 72 109 33 — — —

N = The number of cases the element has been observed during the month.

TN - Total number of cases the wind has been observed for all directions during the month,

BAHTIM-APRIL 1969

This month was slightly cooler and less rainy than last April. Five short and light heat waves were experienced during the period (8th — 9th), on the 15th, 20th, 24th and 30th respectively. The fourth heat wave yielded the highest maximum air temperature for the month (33.7 °C). During rest of the month, the daily maximum air temperatures were below normal. The lowest maximum air temperature for the month (20.0 °C) was reported on the 1st.

The extreme maximum soil temperatures were lower than the corresponding values of last April at depths between 2 and 20 cms. and the differences ranged between 6.8 °C at 2 cms, and 0.2 °C at 20 cms, At 50 cms. depth the value was the same as last April and at 100 cms, it was 0.7 °C higher. The extreme minimum soil temperatures were higher than last April at all depths between 2 and 100 cms, and the differences ranged between 0.7 °C at 2 cms, and 2.4 °C at 20 cms.

The daily mean Pan evaporation was 0.5 mm. more than the corresponding value of April 1968. The mean daily actual duration of bright sunshine was 0.7 hour less than April 1968.

KHARGA_APRIL 1969

This month was cooler than normal. The total monthly rainfall was 2.3mms, while this month is normally rainless. A pronounced heat wave occurred during the period (7th — 11th) and two short and light heat waves on the 14th and 24th. The first heat wave yielded he highest maximum air temperature for the month (42.2 °C) on the 9th. During rest of the month the daily maximum air temperatures were below normal. The lowest maximum air temperature for the month (22.8 °C) was reported on the 16th.

The extreme maximum soil temperatures were lower than the corresponding values of last April at all depths except at 100 cms. where it was 0.5 °C higher, the differences ranged between 0.2 °C at 2 cms, and 2.7 °C at 5 cms. The extreme minimum soil temperatures were lower than the corresponding values of last April at shallow depths between 2 and 10 cms. and the differences ranged between 2.5 °C at 5 cms. and 1.8 °C at 10 cms. At deeper depths between 20 and 100 cms, the extreme soil minima were higher than last April and the differences ranged between 0.4 °C at 20 cms. and 2.2 °C at 100 cms.

The daily mean Pan evaporation was 1.72 mm, less than the corresponding value of April 1968. The daily mean actual duration of bright sunshine was 2.0 hour less than the corresponding value of April 1968.

Taeble C 1.—AIR TEMPERATURE AT 12 METRES ABOVE GROUND

APRIL — 1969

		Air Te	emperati	ure (°C)				Mean I		in hou		-	-	ature		
STATION	Mean Max.	Mean Min.	Mean of the day	Night time mean	time	-5°C	0°C	5°C	10°C	15°C	20°C	25°C	30°C	35°C	40°C	45°C
El Kasr	21.1	12.0	16.6	14.4	17.8	24.0	24.0	24.0	23.5	16.4	2.0	0.3	0.0	0.0	0.0	0.0
Tahrir	26.2	11.8	18.1	14.5	20.4	24.0	24.0	24.0	23.6	15.8	8.0	2.6	0.4	0.0	0.0	0.0
Bahtim	26.3	9.8	17.9	13. 6	20.5	24.0	24.0	24.0	22.1	15.2	8.6	3.5	0.4	0.0	0.0	0.0
Kharga	30.9	16.1	23.7	20.8	25.5	24.0	24.0	24.0	24.0	22.2	17.4	9.4	3.8	0.6	0.1	0.0

Table C 2.—ABSOLUTE VALUES OF AIR TEMPERATURE AT $1\frac{1}{2}$ METRES ABOVE GROUND, ABSOLUTE MINIMUM AIR TEMPERATURE AT $5\,\mathrm{cm}_8$ ABOVE GROUND OVER DIFFERENT FIELDS.

APRIL — 1969

	Max.	Temp. a	t 1½ metre	•в (°С)	Min.	Temp. at	l½ metre	98 (°C)	Min. T	emp. at	5 cms. ab	10 70 (°C
STATION	Hig	thest	Lo	west	Hig	hest	Lo	west	Dry	soil	Gr	8.65
	Value	Date	Value	Date	Value	Date	Value	Date	Value	Date	Value	Date
El Kasr	30.7	30	17.4	11	15.2	27	8.0	22	4.7	22	_	_
Tahrir	35.2	24	20.6	12	15.7	15	7.5	18	5.7	2	_	_
Bahtim	33.7	24	20.0	1	15.4	9	5.4	2	2.0	2	-	-
Kharga	42.2	9	22.8	16	23.2	9	9.2	18,19	7.0	19	-	_

Table C 3.—(SOLAR+SKY) RADIATION, DURATION OF BRIGHT SUNSHINE, RELATIVE HUMIDITY, VAPOUR PRESSURE AT 1½ METRES ABOVE GROUND, EVAPORATION & RAINFALL.

APRIL — 1969

Z	Radia-		on of B		R	elative	Humidit	ty. %		Vaj	our j	pressure	(mm	8)		apora- n(mms)	Rain	fall (m	ms)
STATION	(Solar+Sky) F tion gm. cal,	Total Actual monthly	Total Possible monthly	%	Mean of day	1200 U.T.	Lowest	Date	Mean of day	1200 UT	Highest	Date	Lowest	Date	Piche	Pan class (A)	Total Amount Monthly	Max. Fall in one day	Date
:		1				1				•				<u>-</u>					ī
Kaar	472.4	27 2 .7	388.7	70	73	65	24	19	10.3	11.0	14.2	9	6.2	16	6.8	8.18	2.1	1.4	14
ahrir	582. 3	281.2	387.7	73	60	35	14	24	8.9	8.0	13.1	15	5.2	16	7.6	7.81	0.3	0.3	8
ah im	608.9	269.7	387.2	70	59	32	18	20	8.4	7.6	13.0	15	4.2	16	8.7	8 00	1.7	0.9	11
harga	496.4	26 5 .4	382.8	6 9	31	21	9	30	6.4	6.3	11.7	16	2.7	22	18.0	14,22	2.3	1.5	15

Table C 4.—EXTREME SOIL TEMPERATURE AT DIFFERENT DEPTHS (ems)
IN DIFFERENT FIELDS

APRIL - 1969

STATION	est (H)		Extre		-		(°C) in	dry field		Exti			mperat			grass i	field
	Highest Lowest	2	5	10	20	50	100	200	3 00	2	5	10	20	50	100	200	300
El Kasr	H L	35.4 14.3	30.3 13.3	26.4 14.4	23.4 16.6	21.5 18.4	20.6 19.2	23.4 23.2		_ _	_	_			_	-	
Tahrir	H L	49. 3 14.9	41.6 15.5	34.8 15.8	29.3 18.6	24.8 20.8	23.5 21.7	22.6 21.0	22.5 20.6	 	_	_	_	_		_	_
Bahtim	H L	45.9 15.7	37.4 16.0	31.5 18.2	27.2 21.0	24.6 21.2	23.3 21.6	22.5 21.9	22.8 22.6	_ 	_	_	_	_		 	_
Kharga	H L	52.4 10,1	44.5 12.0	36.7 17.1	31.2 22.4	28.7 25.8	27.2 26.0	26.7 25.7	26.8 26.4	_ _	_	_	_	_		=	_

Table C 5 .- SURFACE WIND

APRIL - 1969

		Speed m			Days w	ith surfac	e wind sp	eed at 10	metres		Max, Gu at 10	st (knots) metres
STATION	Mean of the day	Night time mean	Day time mean	≥10 knots	≥15 konts	≥20 knots	≥25 knota	≥ 30 knota	≥35 knots	≥40 knots	value	Date
El Kasr	2.4	2.1	2.8			-		_	_	_	_	_
Tahrir	2.5	1.9	3.2	23	20	5	2	9	0	0	\$ 5	16
Bahtim	2.6	1.8	3.5	30	20	6	2	0	0	o	34	16
Kharga	4.0	3.2	4.8	29	26	17	7	0	0	0	39	21

PRINTED IN U.A.R. BY THE GENERAL ORGANIZATION FOR GOVT. PRINTING OFFICES. CAIRO

ALY SULTAN ALY
UNDER-SECRETARY OF STATE
Chairman of the Board of Directors

8826-1969-150

MONTHLY WEATHER REPORT

VOLUME 12 NUMBER 5

MAY, 1969

ATMOSPHERIC SCIENCES LIERARY

JAN 40 19/2

N.O.A.A. U. S. Dept. of Commerce

U.D.C. 551, 506.11(62)

METEOROLOGICAL DEPARTMENT CAIRO

PUBLICATIONS OF THE METEOROLOGICAL DEPARTMENT OF THE UNITED ARAB REPUBLIC CAIRO

In fulfilment of its duties, the U.A.R. Meteorological Department issues several reports and publications on weather, climate and agrometeorology. The principal publications are described on this page.

Orders for publications should be adressed to:
"The Director General, Meteorological Department, Kubri-el-Qubbeh — CAIRO".

THE DAILY WEATHER REPORT

This report is issued daily by the Meteorological Departmen: since the year 1901. It includes surface and upper air observations carried out by the relevant networks of the Republic at the principal hours of observations.

As from January 1968 this report was revised to include a condensed representative selection of surface and upper air observations besides the 1200 U.T. surface & 500 mb charts.

THE MONTHLY WEATHER REPORT

First issued in 1909, the Monthly Weather Report served to give a brief summary of the weather conditions that prevailed over Egypt during the month, with a table showing the mean values for few meteorological elements and their deviations from the normal values. From 1954 to 1957 this report was in a rapid state of development and extension resulting into a voluminous report on January 1958 giving surface, upper air, and agro-meteorological data for U.A.R.

As from January 1964, the Monthly Weather Report was pressed to give climatological data for a representative selection of synoptic stations.

THE AGRO-METEOROLOGICAL ABRIDGED MONTHLY REPORT

Gives a review of weather experienced in the agro-meteorological stations of the U.A.R. as well as monthly values of certain elements.

THE ANNUAL REPORT

This report gives annual values and statistics for the various meteorological elements, together with a summary of the weather conditions that prevailed during all months of the year.

CLIMATOLOGICAL NORMALS FOR EGYPT

A voluminous edition was issued in march 1968 which brings normals and mean values up till 1960.

METEOROLOGICAL RESEARCH BULLETIN

First issued in January 1969 on a bi-annual basis. It includes research works carried out by members of staff of "The Meteorological Institute for Research and Training" and the Operational Divisions of Meteorological Department.

TECHNICAL NOTES

As from October 1970, the Meteorological Department started to issue a new series of publications in the form of Technical Notes (non periodical) on subjects related to studies and applications of meteorology in different fields for the benefit of personnel working in these fields.

The first Technical Note I was issued in October 1970 on : Sandstorms & Duststorms in the U.A.R.

MONTHLY WEATHER REPORT

VOLUME 12

NUMBER 5

MAY, 1969

U.D.C. 551, 506.1 (62)

METEOROLOGICAL DEPARTMENT
CAIRO

CONTENTS

	PAGES
Genral Summary of Weather Conditions	1- 2
SURFACE DATA	
Table A1.—Monthly values of the Atmospheric Pressure, Air Temperature, Relative Humidity. Bright Sunshine Duration and Piche Evaporation	3
" A2. – Maximum and Minimum Air Temperatures	-}
" A3. –Sky Cover and Rainfall	5
" A4Number of Days of Occurrence of Miscellaneous Weither Phenomena	6)
" A.5—Number in Hours of Occurrences of Concurrent Surface Wind Specified Direction Recorded Within Specified Ranges	7,8
UPPER AIR DATA	
Table B1.—Monthly Means and Monthly Absolute Higher & Lower Values of Altitude, air Temperature & Dew point at Standard and Selected Pressure Surfaces	9,10
" B2.—Mean and Extreme values of The Freezing Level and The Tropopause; The Highest Wind Speed in The Upper Air	11
., B3.—Number of Occurreneces of Wind Direction Within Specified Ranges and The Mean Scalar Wind Speed at the Standard and Selected Pressure Surfaces	12-14
AGRO METEOROLOGICAL DATA	
Reviews of Agro-mete pological stations	516
Table C1.—Air Temperature at 1½ Metres Above Ground	17
" C2.—Absolute Values, of Air Temperature at 1½ Metres Above Ground, Absolute Minimum um Air Temperature at 5 Cms Above Ground Over Different Fields	ı.
,, C3.—(Solar + Sky) Radiation, Duration of Bright Sunshine, Relative Humidity and Vapour Pressure at 1½ Metres Above Ground, Evaporation and Rainfall	17
" C4.—Extreme Soil Temperature at Different Depths in Different Fields	l 3
" C5.—Surface wind	13
Note: For explanatory notes on tables please refer to Volume 12, Number 1 (January 1969).	

GENERAL SUMMARY OF WEATHER CONDITIONS

MAY 1969

Moderately changeable, characterized by three khamsin depressions. Heavy rain between the 10th and 16th over northwest coast

GENERAL DESCRIPTION OF WEATHER

The prevailing weather during this month was moderately changeable with respect to temperature. The month was mainly characterized by four khamsin heat waves of variant intensity; and of short duration in north of the Republic and moderate duration in the south with their peaks round the 1st, 8th, 22th and 31st. The break down of these heat waves was followed by appreciable drop in temperature mainly during the two periods: (2nd-6th) and (10th-16th). period was characterized by scattered light rain in general over the Mediterranean district, which extended sometimes to few localities inland.

Rising sand blew during several days over scattered parts, mainly in Upper Egypt and Western Desert districts. Early morning mist developed during few days over scattered localities in Delta, Canal and Cairo areas.

PRESSURE DISTRIBUTION

The most outstanding features of pressure distribution over the surface maps during this month were:

- The Atlantic anticyclone and its southeast extension.
- Deep low pressure systems through North and Central Europe.
- Moving anticyclones through Europe and their extensions through the Mediteranean and North Africa.

- Shallow khamsin secondaries moving near the coast of North Africa.
 - The Sudan monsoon trough.

During this month, three khamsin trasits through U.A.R. and two northward elongations of the Sudan trough were experienced.

The first khamsin depression over the western coast of U.A.R. on the 1st. as a secondary for a low pressure system over the Balkans. The whole system proceeded eastwards, and the Khamsin depression traversed north of U.A.R. on the 2nd. The second and third Khamsin depressions developed over North Algiers, on the 5th, 18th respectively and were secondaries for travelling deep low pressure systems through central Europe. The Khamsin depressions moved south of the coast of North Africa, and traversed north of U.A.R. on the 9th and 22nd respectively.

The Sudan trough experienced two northward elongations during the periods (10th—11th) and (29th—31st).

The transit of the above mentioned khamsin depressions through north of U.A.R. and the two northward elongations of the Sudan trough, were followed by the establishment of high pressure over East Mediterranean and NE Africa. Accordingly, the barometric pressure over U.A.R. experienced five oscillations with their minima round the 2nd, 9th, 12th, 23rd and 31st respectively.

The most important features of pressure distribution over the upper air charts were:

- Deep upper lows over North Russia and North Atlantic.
- Secondary upper troughs through the Mediterranean and its vicinities, passing through East Mediterranean and north of U.A.R. on the 5th, 18th and 23rd.

SURFACE WIND

The prevailing winds during this month blew mostly between the NE & NW directions, and were generally light to moderate. They became fresh to strong during several days over scattered parts mainly in the Mediterranean, Red Sea and Western Desert districts.

Gales were recorded at Dabaa on the 1st & 5th.

TEMPERATURE

Maximum air temperature experienced large variability during the heat waves mostly in the middle and southern parts. During the rest periods of the month, maximum air temperature showed moderate to large departures below normal in general. Maximum air temperature values ranged generally between 23°C & 33°C in the northern parts, between 27°C & 37°C in the middle parts and between 33°C & 43°C in the southern parts.

The absolute maximum air temperature for the month was 45.6°C recorded at Aswan on the 11th.

Variability in minimum temperature was rather less than variability in maximum temperature. Minimum air temperature oscillated round normal and its values ranged generally between 15°C & 20°C in the northern and middle parts and between 18°C & 26°C in the southern parts.

The absolute minimum air temperature was 11.2°C recorded at Beni Suef on the 14th.

PRECIPITATION

Light rain fell over the Mediterranean district during the period (10th-16th) and extended sometimes to few land localities. Rain was locally heavy on the 11th over Sallum and Mersa Matruh where 17.0 mm, 20 mm. were reported respectivey. It is worthy to mention that the daily rainfall at Mersa Matruh on the 11th (20 mms) is a record for May since the year 1947. The monthly rainfall was generally above normal over the Mediterranean district and below normal elsewhere.

The highest daily rainfall for the month was 20.0 mm. recorded at Mersa Matruh on the 11th.

The highest monthly rainfall was 31.7 mm, recorded at Sallum.

M. F. TAHA
Under Secretary of State
Director General
Meteorological Department

Cairo, July 1971

Table A 1. — MONTHLY VALUES OF THE ATMOSPHERIC PRESSURE, AIR TEMPERATURE, RELATIVE HUMIDITY, BRIGHT SUNSHINE DURATION & PICHE EVAPORATION.

MAY - 1969

STATION	Atmospheric Pressure (mbs) M.S.L		Air Temperature 'C										Relative		Bright Sunshine			
			Maximum Minimum				Dry Bulb		Wet Bulb		Humidity %		Duration (Hours)			Piche Evap		
	Mean	D.F. Normal or Average	(A) Mean	D.F. Normal or Average	(B) Mean	D.F. Normal or Average	A+B 2	Mean	D.F. Normal or Average	Mean	D.F. Normal or Average	Mean	D.F. Normal or Average	Total Actual	Total Posible	%	(mms) Mean	
Mersa Mateuh . (A) Mersa Mateuh . (A) Mexandria (A) Port Said (A) El Arish Ghazza	1013.9 1013.6 1012.9 1011.6	0.0 +0.1 0.0 -0.9	26.0 24.4 26.2 24.8 —	-0.2 -1.1 -0.4 -0.8	17.2 15.5 17.4 19.0	+0.7 +1.0 +0.9 -0.6	21.6 20.0 21.8 21.9	21 2 19.7 21.4 21.6	+0.3 -0.3 -0.0 -0.5	16.5 17.3 17.9 18.9	+0.3 +1.0 +0.2 -0.1	60 78 69 77 —	+ 1 +12 + 2 + 7 -	344.1 305.6 —	425.6 425.6 —	81 72 —	6.6 4.8 6.3 6.1	
Centa	1012.0	-0.1	31.1	-0.6	16.0	+1.6	23.6	22.8	+0.2	17.4	+1.0	55	+ 6	33 1.8	424.5	78	7.3	
Cairo (A)	1011.5	-0.7	31 .5	-0. 8	17.8	+0.4	24.6	24.1	-0.5	17.3	-0. 3	48	+ 5	_	-	_	17.9	
Fayoum (A) Assyout (A) Luxor (A) Aswan (A)	1009.7 1008.4	-0.5 -1.0 -0.4 -0.5	33.3 33.9 34.9 38.8 38.6	$ \begin{array}{c c} -0.4 \\ -1.0 \\ -1.2 \\ 0.0 \\ +0.5 \end{array} $	17.5 16.6 19.0 19.9 21.4	+0.3 +0.2 -0.2 -0.2 +0.7	25.4 25.2 27.0 29.4 30.0	25.5 25.6 27.0 29.6 30.4	+0.5 -0.1 -0.6 -0.5 +0.4	17.7 16.9 16.9 17.8 15.9	+1.7 +0.3 +1.2 +0.4 +0.6	43 38 31 26 14	+ 8 + 2 + 9 + 4 + 2	344.5 — —	419.4		7.9 15.3 20.8 12.9 28.4	
Biwa Bahariya Farafra Dakhla Kharga	1011.6 1012.1 1010.9	0.7 0.2 1.5 +0.5 0.8	33.0 33.3 33.8 35 1 36.8	-1.2 -1.1 -0.5 -1.8 -0.9	17 1 17.2 17.3 18.7 20.9	+0.5 0.0 +0.6 -0.8 0.0	25.0 25.2 25.6 26.9 28.8	25.2 25.6 25.8 27.1 29.1	$ \begin{array}{r} -0.4 \\ -0.1 \\ +0.3 \\ -0.5 \\ +1.1 \end{array} $	16.0 16.2 16.1 15.8 15.6	-0.5 +0.3 +1.6 +0.8 -0.1	33 32	+ 4 + 5 + 9 + 6	354.8 — — — 336.6	421.4 — — — 414.1	84 - - 81	17.6 12.2 18.0 21.6 23.4	
Tor	1008.5	-0.7 -0.5	30.6 29.4	+0.9 -0.9	21.3 22.4	+0.9 -0.8	26.0 25.9	26.2 26.2	+0.6 -0.5	19.0 19.3	 +1.0 +0.7	 47 49	+ 3 + 5	<u>-</u> -	=	<u>-</u>	17.1 15.4	

။ ယ

Table A2 .- MAXIMUM AND MINIMUM AIR TEMPERATURES

MAY - 1969

Station	Maximum Temperature °C										Min. p.	Minimum Temperature *C							
	**		10		No.	No. of Days with Max-Temp.					From Normal	est	ę.	out	ş	N	o. of D Min. I	eys wit	t h
	Highost	Date	Lowest	Date	>25	>30	>35	>40	>45	Mean	D. From	Highest	Date	Lowest	Date	<10	<5	<0	<-
Sallum	32.0 29.8 33.4 28.2	23 7 8 31	20.6 20.8 22.4 21.5	15 12 2 11 —	17 14 20 13 —	3 0 3 0 -	0 0 0 -	0 0 0 0	0 0 0 0	17.0 15.2 18.4 		23.4 18.2 21.3 23.1	30 24 31 31	14.0 11.9 13.4 14.7	11 7 14 3 —	0 0 0 -	0 0 0 0 -	0 0 0 0	0000
lanta	36.7	31	22.6	10	29	20	5	0	0	_	_	1 9 .6	30	12.7	7	0	0	0	
Cairo (A)	39 .5	21	24.4	10	30	19	7	0	0		-	21.0	1	13.8	4	0	0	0	
Fayoum (A) Minya (A) Assyout (A) Luxor (A)	40.8 44.7	31 31 21,31 22 11	24.3 28.6 27.5 31.0 26.8	10 11 14 14 15	30 31 31 31 31	22 26 29 31 30	12 12 16 25 22	2 0 3 13 14	0 0 0 0 2	15.3 15.0 17.2 17.0	 - - -	22.6 20.0 24.0 25.0 26.6	22 23 22 23 22	13.8 12.4 15.0 15.0 17.0	1,3 3 3 1	0 0 0 0	0 0 0	0 0 0 0	0
Siwa	39.4 39.0 40.4 40.6 42.0	28 1 1 1 31	26.0 26.0 28.2 28.2 31.0	16 10 13 14 14	31 31 31 31 31 31	21 24 26 30 31	13 11 12 15 19	0 0 1 1 8	0 0 0 0	14.9 16.0 16.6 —	- - - -	20.8 21.3 22.0 23.7 25.8	29 22 22 11 23	13.7 13.9 12.7 13.4 13.2	3 3 7 1	0 0 0 0	0 0 0	0 0 0 0	
For	36.0 34.0	- 22 22	26.1 26.2	- 6 16	31 31	18	1 0	0	0 0		_ _	26.6 26.0		16.5 17.7	- 1 1	0 0	0 0	0 0	-

		Mean	Sky Cove	or Oct.					Ra	infall m	ma.					
Station	00	06	12	18	Daily	Total	D. From		. Fall ie day	1	lumber	of Day	with .	Amount	of Re	in
	U.T.	U.T.	U.T.	U.T.	Mean	Amount	Normal	Amount	Date	<0.1	≥0.1	≥1.0	≥5.0	≥10	≥25	≥50
Sallum (A) Merse Matruh (A) Alexandria (A) Port Said (A) El Arish Ghazza	2.9 2.3 3.5 —	2.0 3.4 3.7 2.9	2.5 3.0 3.3 2.2	1.2 2.4 3.1 —	2.3 2.8 3.2 —	31.7 22.5 2.4 2.0	+28.4 +20.0 + 0.4 - 1.0	17.1 20.1 2.4 1.2	11 11 16 10	0 0 0 3 -	5 4 1 2	4 2 1 1	3 1 0 0	1 1 0 0	0 0 0 -	0 0 0 0 -
Tenta	0.8	2.6	2.8	0.9	1.8	1.8	- 1.9	1.8	1 0	0	1	1	0	0	0	0
Cairo (A) Fayoum Minya Assyout Luxor Aswan	0.8 0.9 0.9	2.0 1.6 1.3 1.9	2.6 2.2 2.1 1.8 2.0 1.3	2.0 1.3 1.1 1.6 1.5	2.1 1.4 1.2 1.6 1.4	0.5 Tr. 0 0	- 0.2 - 1.3 - 0.6 - Tr 0.4 - Tr.	0.4 Tr. 0 0	112	0 1 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0 9
Biwa	0.5 0.6 1.6 0.6	1.5 1.1 0.9 1.6 1.7	2.0 1.6 0.7 1.7 1.9	1.8 1.0 0.6 1.0 1.2	1.3 0.8 - 1.4 1.3	0.3 Tr. 0 0	- 1.5 - 0.1 - 0.1 - 0.1 - 0.3	0.3 Tr. 0 0	16 9,10 — —	0 2 0 0	1 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0
Tor	1.4 0.8		2. 1 1.6	 1.8 1.1	- 1.8 1.2	Tr	-0.4 0.0		14,15	0 2	0 0	0	- 0 0	0	- 0 0	- 0 0

Table A 4. -- LAYS OF OCCURRENCE OF MISCELLANEOUS WEATHER PHENOMENA.

MAY - 1969

		Preci	pitation			i	metre			Vie	rising	Metres			
Station	Raim	Snow	Ice, Pellets	Hail	Front	Thunderstor	Mist Vis > 1000	Fog Vis	Hage Vis ≥1000 Metres	Thick Haze Vis	Dust or Sanderising Vis ≥ 1000 Metres	Dust or Sandstorm Vis <1000 Metres	Gale	Clear Sky	Cloudy Sky
Eallum Meres of atrun (A) Alexandria (A) Port Said (A) El Arieh Ghazza	5 4 1 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 -	0 0 0 0	0 0 0 0 0 0 0	1 2 1 0 —	0 6 7 0 —	0 0 1 0 —	0 0 0 0	0 0 0 0	0 4 2 1	0 0 0 -	0 0 0 0	17 12 10 —	2 2 4
Tanta	1	0	0	0	0	0	1	0	1	0	1	0	0	18	0
Fayoum	2 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	5 0 5 6 0	0 0 0 0	5 0 3 2 1	0 0 0 0 0	0 0 0 0	18	1 1 2 3
Siwa Rahariya Farafra Dakhla Kharga	1 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 0 0 0	0 0 0 0	0 0 0 0	0 0 0 1	0 0 0 0	1 2 0 0 7	0 0 0 0	0 0 0 0	21 22 	0 0
Tor	0 "	0 0	0	- 0 0	- 0 0	0 0 0	0 0	0 0	 0 1	0 0	5 0	0 0	- 0 0	20 24	- 2 1

Table A 5.—NUMBER IN HOURS OF OCCURRENCES OF CONCURRENT SURFACE WIND SPEED AND DIRECTION RECORDED WITHIN SPECIFIED RANGES

MAY — 1969

	•	ars)	ours)		1	Numb	er in					of w			g fro	m th	•
Station	csim (hours)	Variable (hours)	Unrecorded (hours)	Wind speed in knots	345 / 014	015 / 044	045 / 074	075 / 104	105 / 134	135 / 164	165 / 194	195 / · 224	225 / 254	1	285 / 314	315 / 344	Į.
Sallum	29	0	12	1-10 11-27 28-47 ≥48 All speeds	49 11 0 0 60	138 16 0 0 154	80 0 0 0 80	66 0 0 0 66	49 0 0 0 49	10 0 0 0 10	5 0 0 0 5	6 0 0 0 6	3 0 0 0 3	21 0 0 0 21	50 45 0 0 95	87 67 0 0	564 139 0 0 703
Meras Matruh . (A)	22	0	2	1 -10 11 -27 28 -47 ≥ 48 All speeds	73 10 0 0 83	40 7 0 0 47	26 16 0 0 42	15 7 0 0	20 6 0 0 26	21 2 0 0 23	3 0 0 3	12 0 0 0 12	21 1 0 0 22	96 6 0 0 102	75 58 0 0 133	115 90 0 0 205	517 203 0 0 720
Alexandria (A)	0	0	0	1-10 11-27 28-47 ≥48 All speeds	77 26 0 0 103	36 7 0 0 43	18 7 0 0 25	34 5 0 0 39	17 1 0 0 18	2 1 0 0 3	3 0 0 0 3	8 0 0 0 8	11 4 0 0 15	77 21 0 0 98	177 21 0 0 198	163 28 0 0	623 121 0 0 744
Port Said (A)	1	0	1	1-10 11-27 28-47 ≥48 All speeds	51 72 0 0 123	\$6 67 9 0 103	20 40 0 0 60	10 28 0 0 38	0 1 0 0	1 0 0 0	5 0 0 0 5	9 9 0 0 18	24 20 0 0 44	22 24 0 0 46	52 49 0 0	113 89 0 0 202	343 399 0 0 742
Tanta	30	2	0	1-10 11-27 28-47 ≥48 Ali specds	84 19 0 0 103	33 5 0 0 38	29 3 0 0 32	20 0 0 0 20	2 0 0 0 2	4 0 0 0 4	21 0 0 0 21	37 3 0 0 40	69 10 0 0 79	104 6 0 0 110	88 16 0 0 104	148 11 0 0 159	639 73 0 0 712
Cairo (A)	20	0	0	1-10 11-27 28-47 ≥48 All speeds	65 30 0 0 95	0	69 29 0 0 98	20 14 0 0 34	10 5 0 0 15	3 4 0 0 7	3 1 0 0 4	5 0 0 0 5	13 10 0 0 23	37 23 0 0 60	62 21 0 0 83	73 18 0 0 91	469 255 0 0 784
Fayoum	20	1	0	1-10 11-27 28-47 ≥48 All speeds	253 11 0 0 264	37 0 0	17 1 0 0 18	3 0 0 0 3	7 0 0 0 7	8 0 0 0 8	14 4 0 0 18	6 1 0 0	20 0 0 0 20	15 0 0 0 15	52 0 0 0 52	40 1 0 0 41	668 55 0 0 723
Minya (A)	3 5	0	1	1-10 11-27 28-47 ≥48 All speeds	214 224 0 0 438	33 0 0	0	1 0 0 0	0 0 0 0	14 3 0 0 17	11 3 0 0 14	4 0 0 0 4	7 1 0 0 8	10 3 0 0 13	27 9 0 0 36	104 11 0 0 115	421 287 0 0 708

Table A 5 (contd.)—NUMBER IN HOURS OF OCCURRENCE OF CONCURRENT SURFACE WIND SPEED AND DIRECTION RECORDED WITHIN SPECIFIED RANGES

MAY - 1969

	8)	178)	ours)			Num	ber in	houi r			rence Lirecti				ing f r	om t	he
Station	calm (bours)	Variable (hours)	Unrecorded (hours)	Wind speed in knots	345 / 014	1	. /	075 / 104	1	/ /	11	1	225 / 254	1	1	315 / 344	All directions
Asyout (A)	3	0	0	1-10 11-27 28-47 >48 All speeds	15 14 0 0 29	9 1 0 0 10	4 0 0 0 4	13 0 0 0 13	12 2 0 0 14	10 4 0 0 14	4 7 0 0	6 2 0 0 8	54 2 0 0 56	223 17 0 0 240	156 58 0 0 214	64 64 0 0 128	570 171 0 0 741
Luxor (A)	6	4	19	1 10 11·27 28·47 ≥48 All speeds	35 0 0 0 35	24 0 0 0 0	14 0 0 0 14	32 0' 0 0 32	20 1 0 0 21	48 1 0 0 49	84 1 0 0 85	38 0 0 0 38	55 0 0 0 0 55	118 26 0 0 144	148 21 6 0 169	48 1 0 0 49	664 51 0 0 715
Алжа н (A)	15	5	2	1-10 11-27 28-47 > 18 All speeds	101 29 0 0 130	98 28 0 0 126	10 0 0 0 10	2 0 0 0 2	11 0 0 12	12 4 0 0 16	16 6 0 0 22	5 1 0 0	8 2 0 0 10	25 2 0 0 0	51 9 0 0 60	142 159 0 0 301	481 241 0 0 722
Siwa	26	1	1	1 10 11 27 28 47 > 48 All speeds	28 11 0 0 39	122 29 0 0 151	109 5 0 0	64 4 0 0 68	45 1 0 0 46	22 1 0 0 23	4 2 0 0 6	7 1 0 0 8	4 0 0 0 4	25 6 0 0 31	71 36 0 0	81 38 0 0 119	582 134 0 0 716
Dakhla	0	2	0	t -10 11 -27 28 -47 >48 All speeds	113 0 0 0 113	30 8 0 0 38	17 0 0 0	7 1 0 0 8	17 2 0 0	8 1 0 9	30 1 0 0 31	15 0 0 0 15	54 0 0 0 54	101 0 0 0 101	128 22 0 0 150	1 :2 65 0 0	642 100 0 0 742
Kharga	3	5	4	1 10 11 -27 2847 > 18 All speeds	80 133 0 0 213	3× 8 0 0 46	0 0 0 14	4 0 0 0 4	11 0 0 0 11	12 0 0 0 12	10 1 0 0 11	4 1 0 0 5	10 0 0 0 10	0	74 14 0 0 88	165 140 0 0 3 0 5	435 297 0 0 732
Hurghada	13	0	10	1 -10 11 - 27 28 - 47 	25 185 0 0 210	26 33 0 0 59	15 1 0 0 16	0 0 0 11	11 0 0 0 11	26 4 0 0 30	7 0 0 0 7	5 0 0 0 5	6 0 0 6	6 0 0 6	41 38 0 0 79	80 193 8 0 281	259 454 8 0 721
Quaeir	5	3	. 8	110 1127 2847 ≥48 All speeds	163 141 0 0 244	63	19 0 0 0 19	16 0 0 0 16	17 0 0 0 0	11 0 0 11	25 0 0 0 25	13 0 0 0 13	22 0 0 0 22	45 0 0 0 45	77 0 0 0 0 77	109 67 0 0 176	507 221 0 0 728

UPPER AIR CLIMATOLOGICAL DATA

Table B1 —MONTHLY MEANS AND MONTHLY ABSOLUTE HIGHER & LOWER VALUES OF ALTITUDE, AIR TEMPERATURE & DEW POINT AT STANDARD AND SELECTED PRESSURE SURFACES

MAY-1969

Station	Pressure Surface	Alt	titude of Pro	ossure Surfa	ce (gpm)		Тетре	erature (°C)		Dow P	oint (°C)
Sta	(Millibar)	N	Mean	Highest	Lowest	N	Mean	Highest	Lowest	Ŋ	Mean
Мегев Matruh 0000 U.T.	Surface	28 28 28 27 27 26 27 24 22 19 12 8 8 8	1010m.b. 114 1564 3125 4370 5794 7456 9487 10716 12166 14000 16554 18730 19664 20776 22176 24(00	1015m.b. 1552 3197 4454 5890 7580 9640 10898 12418 14295 16779 18870 19786 20866 22270	1006m.b. 79 1453 3047 4266 5658 7261 9255 10475 11949 137:9 16295 18630 19580 20672 22073	28 28 28 27 27 27 26 27 24 22 19 12 8 8 4 1	17.9 18.2 15.3 6.3 1.9 12.1 25.0 40.2 48.2 57.6 66.4 67.7 66.0 58.6 56.0	21.0 21.5 21.5 11.6 4.0 - 6.4 20.4 36.0 36.7 45.9 52.9 63.3 64.6 62.8 60.0 55.0	13.8 14.6 7.8 -2.0 -9.5 -18.6 -31.5 -45.2 -54.0 -63.9 -61.3 -71.8 -72.4 -71.0 -66.8 -62.6	28 28 28 27 27 27 26 25 24 15 2 ——————————————————————————————————	15.4 14.9 0.4 —11.6 —19.0 —28.9 —40.0 —52.5 —59.3 —65.8 —66.8
Helwan 0000 U.T.	Surface	25 25 25 25 25 25 25 24 23 20 19 14 11 10 7	995m.b. 94 1489 3112 4358 5782 7453 9493 10722 12163 13982 16492 18624 19523 20702 22142 23963 26580	998 m.b. 117 1524 3158 4420 5862 7564 9628 10860 12356 14211 16673 18800 19729 20815 22231 24062 26703	991m.b. 58 1439 3029 4265 5681 7339 9363 10589 12028 13836 16350 18140 19500 20615 22035 23843 26424	25 25 25 25 25 25 25 24 23 20 19 14 11 10 7	20.0 15.9 6.6 — 1.8 —11.9 —23.7 —38.5 —47.9 —55.6 —67.8 —64.2 —65.1 —63.5 —61.7 —58.8 —55.3 —48.9	25.6 24.0 11.3 4.9 - 5.1 -18.7 - 30.0 - 38.4 - 47.5 - 55.1 - 59.5 - 61.0 - 60.4 - 59.9 - 56.6 - 52.9 - 46.5	15.0 9.4 - 0.2 - 7.6 -16.0 -26.6 -42.8 -52.4 -63.7 -61.5 -71.0 -69.2 -66.0 -65.7 -61.0 -58.1 -54.0	25 25 25 25 25 24 22 14 12 ———————————————————————————	11.3 - 0.6 -10.6 -16.3 -27.0 -38.3 -51.0 -58.9 -64.7 -67.7 -
Авмап 0000 U.T.	Surface	30 30 30 30 30 30 30 30 29 28 27 26 23 20 19 13	985m,b. 67 1441 3144 4415 5859 7555 9630 10881 12851 14176 16616 18748 19680 20798 22190 24033 26698	991m.b. 115 1528 3179 4451 5959 7695 9770 11031 12527 14373 16749 18920 19844 21019 22429 24267 26899	981m.b. 28 1461 3104 4357 5790 7466 9521 10655 12204 14012 16423 18560 19509 20626 22037 23862 26522	30 30 30 30 30 30 30 29 28 27 26 23 20 19 13 11	25.1	31.0 -28.4 15.3 7.4 -1.3 -16.1 -25.8 -37.9 -48.0 -56.1 -63.0 -53.7 -53.0 -55.6 -54.4 -52.5 -43.1	20.8	30 30 30 30 30 30 30 29 28 6 	2.2

The number of cases the element has been observed during the month.

^{*} The atmospheric presselevation of the radiosonde station.

UPPER AIR CLIMATOLOGICAL DATA

Table B1 (contd).—MONTHLY MEANS AND MONTHLY ABSOLUTE HIGHER & LOWER VALUES OF ALTITUDE, AIR TEMPERATURE & DEW POINT AT STANDARD AND SELECTED PRESSURE SURFACES

MAY-1969

Note: Climatological upper air data for Mersa Matruh, Helwan & Aswan at 1200 U.T. are missing since number of days of radiosonde observations at these stations are less than the permissible number needed for calculating or processing monthly values.

Table B 2.—MEAN AND EXTREME VALUES OF THE FREEZING LEVEL AND THE TROPOPAUSE. THE HIGHEST WIND SPEED IN THE UPPER AIR

MAY -1969

					Fr	ezing	level							First	Tropo	pause				High	est wi	nd sp	bee
			Mean			Highest			Lowest	;		Mean			Righes	t	!	Lowes	t	â	3		30
	Station	Altitude (gpm)	Pressure (mb.)	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Progeure (mb.)	Direction (000 360)	Speed in Kr
		(N)	(N)	(N)					The state of the s		(N)	(N)	(N)			:					:	ļ	
	Mersa Matruh (A)	4079 (27)	62 0 (2 7)	-16.1 (27)	4940	562	-29.7	2720	730	-0.0	12060 (17)	210 (17)	-58.0 (17)	17720	85	-75.0	845 0	338	-41.7	11070	230	238	115
0000 U.T.	Helwan	4126 (25)	619 (25)	-18.4 (25)	5220	542	-22.1	3103	700	-4.2	1 30 15 (19)	180 (19)	-60.6 (19)	16950	93	-70.2	11 34 0	223	-53.0	936 0	304	203	150
-	Aswan , (A)	471 4 (3 0)	578 (3 0)	-17.6 (30)	534 0	5 39	-18.7	403 0	625	~0.8	16764 (23)	100 (23)	-71 · 3 (23)	2 253 0	38	-55.2	15420	121	-66.5	1269 0	186	242	118

N = The Number of cases the element has been observed during the month.

Table B 3.—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES.

MERSA MATRUH (A)—MAY 1969

öZ Wind between ranges of direction (000-360)° Number o Number of winds Pressure Surface (Millibar) (**ff**) (ff) (ff) N N N N N N N N N N m m m m m m m m \mathbf{m} m m m Surface 6 8: U.T.

N = The number of cases the element has been observed during the month,

TN = The total number of cases the wind has been observed for all directions during the month.

Table B 3 NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES.

HELWAN-MAY 1969

					Wi	nd betwee	n ranges o	of direction	ı (000—3 60)•				Calm	jo Z	wind te)
Time	Pressure Surface (Millibar)	345 7 014	015 044	045	075 104	105 / 134	135 164	165 / 194	195 224	225 / 254	255 / 284	285 / 314	315 / 344	ber of Ca winds	Number ations (T	Scalar wir l (Knote)
		N (ff)	$N = \frac{ \langle ff \rangle ^{\frac{1}{4}}}{m}$	N (ff) m	N (ff)	N (ff) m	N (ff)	N (ff) m	N (ff)	N (ff)	N (ff)	N (ff)	N (ff)	Num	Total observ	Nean Speed
000 U. T.	Surface	4 7 5 26 2 16 1 15 0 — 1 10 1 10 0 — 0 — 0 — 0 — — — —	7 9 3 18 0 - 0 1 14 1 13 1 6 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	3 6	1 6 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 0 1 9 0 0 0 0 0	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 3 16 2 46 4 59 5 50 2 92 1 2 1 14 0	1 30 4 30 4 50 3 55 3 59 1 81 3 63 3 54 4 74 — — — — — — — — — — — — — — — — — — —	5 21 4 24 4 38 4 35 6 49 6 56 5 63 5 65 1 75	5 16 5 25 5 28 7 31 2 34 2 54 2 67 0 –	0 2 22 3 41 3 25 1 45 2 64 1 17 0	000000000000000000000000000000000000000	22 25 25 24 22 18 13 12 8 5	5 20 28 38 38 49 44 56 61 74

N = The number of cases the element has been observed during the month.

TN - Total number of cases the wind has been observed for all directions during the month,

Table B 3 (contd.).—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES

ASWAN (A)— **MAY** 1969

,				,,,,,,	Wind b	between sp	ecified ran	ges of dire	ction (000)	- 300)°				oslm	r of TN)	ind (•
Time	Pressure Surface Millibar	345 / 014	015 / 044	045 [074	075 / 104	105 / 134	135 / 164	165 / 194	195 224	225 / 254	255 / 284	285 / 314	315 / 344	of ids	numbe ations (scalar wind
		N (ff)	N	N (ff)	N (ff)	N (ff)	N (ff) m	N (ff)	N (ff)	N (ff) m	N (ff) m	N (ff) m	N (ff) m	Number wir	Total observa	Mean soa Speed
0000 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	12 7 6 9 2 15 1 18 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 —	4 8 8 1 10 0 - 1 2 0 - 0 - 2 12 0 - 0 - 0 - - 0 - -	0 - 6 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0 0 - 0 - 0	0 — 1 5 0 — 0 — 0 — 0 — 0 — 0 — 1 5 5 15 2 10 5 15 5 17 3 17 0 —	1 8 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 — 1 9 2 9 2 27 0 — 0 — 0 — 0 — 1 21 1 7 0 — 0 — 0 — 0 — 0 —	0 — 0 — 7 15 6 20 4 28 5 46 3 68 2 78 89 1 85 4 23 2 22 0 — 0 — 0 — 0 —	0	2 6 1 29 6 22 8 21 7 27 13 39 12 44 13 50 11 57 3 61 1 18 3 9 1 5 0 —	2 13 4 11 6 14 6 15 8 22 6 24 2 44 4 59 2 54 1 51 0 2 10 0 0 0	10 11	000000000000000000000000000000000000000	30 29 29 28 28 28 28 28 28 27 25 20 18 15	9 14 18 24 29 45 53 60 52 23 14 11 17 16 16

N = The number of casees the wind has been observed from the range of directions during the month.

TN = The total number of cases the wind has been observed for all directions during the month.

REVIEW OF AGRO-METEOROLOGICAL STATIONS

EL KASR - MAY 1969

This month was slightly cooler and appreciably more rainy than normal. The total monthly rainfall was 21.4 mms, while the normal is only 3.6 mms. The daily maximum air temperatures were below normal most days of the month. A weak heat wave occurred on the 7th giving the highest maximum air temperature for the month (27.5°C).

The extreme maximum soil temperatures were lower than the corresponding values of last May at shallow depths between 2 and 10 cms, and also at 100 cms., and the differences ranged between 3.7°C at 5 cms. and 0.4°C at 100 cms. At 20 cms. depth the value was 0.6°C higher, and at 50 cms., it was the same as last May. The extreme minimum soil temperatures were lower than the corresponding values of last May at all depths between 2 and 100 cms. and the differences ranged between 4.9°C at 2 cms. and 0.2°C at both 50 and 100 cms.

The mean daily Piche evaporation was 0.6 mm. more than the corresponding value of May 1968. The mean daily actual duration of bright sunshine was 0.5 hour less than May 1968.

TAHRIR -- MAY 1969

This month was slightly cooler than last May. The total monthly rainfall was 1.9 mm,. The month was characterized by four heat waves on the 1st, 8th, during the periods (21st — 23rd) and (28th — 31st) respectively. The third heat wave yielded the highest maximum air temperature for the month (37.5°C) on the 21st. The daily maximum air temperatures were below normal during the periods (2nd — 6th) and (10th — 14th). The lowest maximum air temperature for the month (22.3°C) was reported on the 10th.

The extreme maximum soil temperatures were lower than the corresponding values of last May at all depths between 2 and 100 cms., and the differences ranged between 2.1°C at 2 cms. and 0.8°C at 20 cms. The extreme minimum soil temperatures were also lower than the corresponding values of last May at all depths between 2 and 100 cms, and the differences ranged between 6.1°C at 2 cms., and 0.2°C at both 50 and 100 cms.

The mean daily Pan evaporation was 0.26 mm. less than the corresponding value of May 1968. The mean daily actual duration of bright sunshine was 0.7 hour less than May 1968.

BAHTIM -- MAY 1969

This month was slightly cooler than last May. The total monthly rainfall was only 0.5 mm. The month was characterized by four heat waves on the 1st, 8th, during the periods (20th — 23rd) and (28th — 31st). The third heat wave yielded the highest maximum air temperature for the month (38.8°C) on the 21st. The daily maximum air temperatures were below normal during the periods (2nd — 6th), (10th — 15th) and on the 25th. The lowest maximum air temperature for the month (23.7°C) was reported on the 10th.

The extreme maximum soil temperatures were lower than the corresponding values of last May at shallow depths between 2 cms. and 10cms. and also at 50 cms., and the differences ranged between 3.0°C at 2 cms, and 0.7°C at 50 cms. At both 20 and 100 cms. the value was 0.2°C higher than last May. The extreme minimum soil temperatures were lower than last May at shallow depths between 2 and 10 cms, and the differences ranged between 0.8°C at 2 cms, and 0.2°C at 5 cms. At deeper depths between 20 and 100 cms. the values were higher than last May, and the differences ranged between 0.2°C at both 20 and 50 cms and 0.7°C at 100 cms.

The mean daily Pan evaporation was 0.11 mm. less than the corresponding value of May 1968. The mean daily actual durration of bright sunshine was 0.7 hour less than May 1968.

KHARGA - MAY 1969

This month was rainless and its mean daily air temperature was nearly normal. The month was characterized by four heat waves on the 1st and during the periods (8th — 11th), (20th — 25th) and (29th-31st). During rest of the month, the daily maximum air temperatures were below normal. The last heat wave yielded the highest maximum air temperature for the month (42.0°C) on the 31st. The lowest maximum air temperature for the month (31.0°C) was reported on the 14th.

The extreme maximum soil temperatures were higher than the corresponding values of last May at all depths between 2 and 100 cms. except at 5 cms, where the value was 0.2°C lower, the differences ranged between 1.3°C at 2 cms, and 0.1°C at 50 cms. The extreme minimum soil temperatures were lower than last May at depths between 2 and 20 cms., and the differences ranged between 3.5°C at 2 cms. at 0.8°C at 20 cms. At 50 and 100 cms. depths the values were higher than last May by 0.1°C and 0.3°C respectively.

The mean daily Pan evaporation was 1.9 mm. less than the corresponding value of May 1968. The mean daily actual duration of bright sunshine was 1.2 hours less than May 1968.

Table C 1.—AIR TEMPERATURE AT 12 METRES ABOVE GROUND

MAY - 1969

		Air To	emperati	ure (°C)				Mean I		in hou		•	-	atu re		
STATION	Mean Max.	Mean Min.	Mean of the day	Night time mean	Day time mean	- 5°C	0°C	5°C	10°C	15°C	20°C	25° ℃	3 0°C	35°C	40°C	45°C
									!	: !			:	i		!
El Kasr	23.6	14.5	19.7	17.3	2 0. 6	24.0	24.0	24.0	24.0	22.6	11.1	1.1	0.0	0.0	0.0	0.0
Tahrir	31.3	16.1	22.8	18.9	24.3	24.0	24.0	24.0	24.0	23.3	13.7	8.1	3.4	0.4	U.0	0.0
Bahtim	31.7	14.4	22.9	18.5	24.6	24.0	24.0	24.0	24.0	21.8	14.5	8.5	3.6	0.7	0.0	0.0
Kharga	3 6.8	20 9	29.2	25.7	30.4	24.0	24.0	24.0	24.0	23.9	23.1	18.4	10.1	4.0	0.3	0.0
			'			:	1				i					į

Table C 2.—ABSOLUTE VALUES OF AIR TEMPERATURE AT 1½ METRES ABOVE GROUND, ABSOLUTE MINIMUM AIR TEMPERATURE AT 5cms ABOVE GROUND OVER DIFFERENT FIELDS.

MAY - 1969

	Max.	Temp. at	11 metro	ев (°C)	Min.	Temp. at	1½ metres	(°C)	Min. T	emp. at i	cms. sho	ove (°C)
8TATION	Hig	hest	Lo	west	Hig	hest	Lo	west	Dry	soil	Gr	488
	Value	Date	Value	Date	Value	Date	Value	Date	Value	Date	Value	Date
]			<u> </u>	1			
El Kasr	27.5	7	21.1	3.5,12*	18.2	24	10.8	7	7.4	5		<u> </u>
Tahrir	3 7,5	21	22.3	10	19.4	27	12.8	14	11.1	14		_
Bahtim	38.8	21	23.7	10	17.7	22	11.2	13	8.2	13		
Kharga	42.0	31	31.0	14	25.8	23		1	11.5	1		
		<u> </u>					!					

[·] more than three days.

Table C 3.—(SOLAR+SKY) RADIATION, DURATION OF BRIGHT SUNSHINE, RELATIVE HUMIDITY, VAPOUR PRESSURE AT 11 METRES ABOVE GROUND, EVAPORATION & RAINFALL.

MAY - 1969

7	Radia- l/cm ²		ion of 1 ine (ho		1	Relative	Humidi	tv. %		Va	pour	pressu"	e (mn	is)		apora- n(mms)	Rain	fall (m	ms)
STATION	(Solar+Sky) R tion gm. cal/	Total Actual monthly	Total Possible monthly	%	Meen of day	1200 U.T.	Lowest	Date	Mean of day	1200 UT	dg.	Date	Low st	Date	Piche	Pan class (A)	Total Amount Monthly	Max. Fall in one day	Late
				1]								1						
ⁱ Kasr	539.7	333.7	426.5	78	83	75	28	7	14.3	15.5	19.7	30	8 7	1	4.5	7.83	21.4	19.2	11
ahrir		4	i	78	63	36	14	1	12.2	11.0	16.8	30	6.1	1	9.4	9.96	1.9	1.8	10
ah.im	1		423.5	74	57	33	9	,	11.0	10.3	16.5	30	4 7	1	11.2	10.67	0.5	0.3	11
	546.7	}	, -	81	2 3	15	5	1	6.7		11.8		2.7		ļ	18.73	0.0		
		1											1						

Table C 4.—EXTREME SOIL TEMPERATURE AT DIFFERENT DEPTHS (cms)
IN DIFFERENT FIELDS

MAY -- 1969

STATION	ost (H)		. Ext	rem		l tem						lry :	f eld			Ext					(cma-)		fi eld
	Highest Lowest	2	5	1	10	20	;	50		100	ì	200)	3 00		2	5	10	20	50	100	200	300
				-							:				İ				!	1	:	!	
El Kasr	II L	40 5 17.2	3 1. 17.	8 3 l :	2 . 4 7 . 7	28.6 18.8	5 , 9	5 8 1. 3	2	≹3 - 3 2∂ , 7		23 23				_			· —	_	<u>-</u>	_	
Tahrir	H L		4 1							27.4 23.7		24. 22.		21 S 22 6					:	-	1	_	
Bahtim	H L	5),3 22.3	2 .	6 .: 3 .2	5 7 2 4	31 0 24.8	3 2	7 9 4 4	: : : :	26 () 2 3 . 4		23. 22.		23 1 2 2 .8									_
Kharga	H L	57 4 16,1	43. 13.			35 8 27 4				30 0 27 1		28 26.		27.3 26.7			*****			-		-	

Table C 5 .- SURFACE WIND

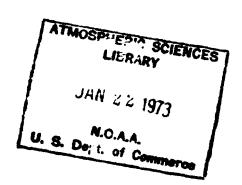
MAY - 1969

		Speed I} metr			Days w	ith surface	e wind sp	eed at 10	metres		Max, Gu at 10	et (knot) metres
STATION	Mean of the day	Night time mean	Day time mean	≥10 knots	≥15 konts	-20 knots	≥25 knota	- 30 knots	≈35 knote	≥40 knota	value	Date
El Kasr	1.9	1.5	2.3	America						·		!
Tahrir	2.7	2 0	3 4	30	21	6	1	0	0	0	34	2
Bahtim	2.9	2.0	: 3.8	31	23	5	0	o	0	0	30	1
Kharga	3.9	3 .0	4 7	30	26	13	2	0	0	0	3 1	28

PRINTED IN U.A.R. BY THE GENERAL ORGANIZATION FOR GOVT. PRINTING OFFICES. CAIRO

ALY SULTAN ALY

UNDER-SECRETARY OF STATE Chairman of the Board of Directors



MONTHLY WEATHER REPORT

VOLUME 12

NUMBER 6

JUNE, 1969

U.D.C. 551, 506.1 (62)

PUBLICATIONS OF THE METEOROLOGICAL AUTHORITY OF THE ARAB REPUBLIC OF EGYPT—CAIRO

In fulfilment of its duties, the Egyptian Meteorological Authority issues serveral reports and publications on weather, climate and agro-meteorology. The principal publications are described on this page.

Orders for publications should be addressed to :

"Chairman of the Board of Directors, Meteorological Authority, Kubri-el-Qubbeh - CAIRO".

THE DAILY WEATHER REPORT

This report is issued daily by the Meteorological Authority since the year 1901. It includes surface and upper air observations carried out by the relevant networks of the Republic at the principal hours of observations.

As from January 1968 this report was revised to include a condensed representative selection of surface and upper air observations besides the 1200 U.T. surface & 500 mb charts.

As from 1st January 1972, the Daily Weather Report will not be issued or distributed because it does not serve no longer any good purpose as it used to be in the past. The Meteorological Authority is ready to supply the recipients of the Report with any information used to be included in it, if they so desire.

THE MONTHLY WEATHER REPORT

First issued in 1909, the Monthly Weather Report served to give a brief summary of the weather conditions that prevailed over Egypt during the month, with a table showing the mean values for few meteorological elements and their deviations from the normal values. From 1954 to 1957 this report was in a rapid state of development and extension resulting into a voluminous report on January 1958 giving surface, upper air, and agro-meteorological data for Egypt.

As from January 1964, the Monthly Weather Report was pressed to give climatological data for a representative selection of synoptic stations.

THE AGRO-METEOROLOGICAL ABRIDGED MONTHLY REPORT

Gives a review of weather experienced in the agro-meteorological stations of Egypt as well as monthly values of certain elements.

THE ANNUAL REPORT

This report gives annual values and statistics for the various meteorological elements, together with a summary of the weather conditions that prevailed during all months of the year.

CLIMATOLOGICAL NORMALS FOR EGYPT

A voluminous edition was issued in March 1968 which brings normals and mean values up till 1960.

METEOROLOGICAL RESEARCH BULLETIN

First issued in January 1969 on a bi-annual basis. It includes research works carried out by members of staff of "The Meteorological Institute for Research and Training" and the Operational Divisions of the Meteorological Authority.

TECHNICAL NOTES

As from October 1970, the Meteorological Authority started to issue a new series of publications in the form of Technical Notes (non periodical) on subjects related to studies and applications of meteorology in different fields for the benefit of personnel working in these fields.

MONTHLY WEATHER REPORT

VOLUME 12 NUMBER 6

JUNE, 1969

U.D.C. 551, 503.1 (62)

CONTENTS

		PAGE
	General Summary of Weather Conditions	1-2
	SURFACE DATA	
lable [A1Monthly values of the Atmospheric Pressure, Air Temperature, Relative Humidity, Bright Sunshine Duration and Piche Evaporation	3
,,	A2.—Maximum and Minimum Air Temperatures	4
,,	A3.—Sky Cover and Rainfall	ä
,,	A4.—Number of Days of Occurrence of Miscellaneous Weather Phenomena	6
"	A5.—Number in Hours of Occurrences of Concurrent Surface Wind Speed and Direction Recorded Within Specified Ranges	7
	UPPER AIR DATA	
[able	B1.—Monthly Means and Monthly Absolute Higher & Lower Values of Altitude, air Temperature & Dew point at Standard and Selected Pressure Surfaces	9.10
,,	B2.—Mean and Extreme values of The Freezing Level and The Tropopause; The Highest Wind Speed in The Upper Air	11
,,	B3.—Number of Occurrences of Wind Direction Within Specified Ranges and The Mean Scalar Wind Speed at the Standard and Selected Pressure Surfaces	12-14
	AGRO-METEOROLOGICAL DATA	
T able	Reviews of Agro-meteorological stations	15,16 17
"	C2.—Absolute Values, of Air Temperature at 1½ Metres Above Ground, Absolute Minim um Air Temperature at 5 Cms Above Ground Over Different Fields	17
,,	C3.—(Solar + Sky) Radiation, Duration of Bright Sunshine, Relative Humidity and Vapour Pressure at 1½ Metres Above Ground, Evaporation and Rainfall	17
,,	C4.—Extreme Soil Temperature at Different Depths in Different Fields	18
,,	C5.—Surface wind	18

Note: For explanatory notes on tables please refer to Volume 12, Number 1 (January 1969).

GENERAL SUMMARY OF WEATHER CONDITIONS

JUNE 1969

Abnormally hot during the first half with two pronounced heat waves, normal summer wearther otherwise.

GENERAL DESCRIPTION OF WEATHER

The prevailing weather this month was characterized by five heat waves two of which were excessive with peaks round 8th & 15th. In particular the third heat wave was of rather long duration and prevailed from the 11th till the 15th. The heat waves were separated by short mild periods.

Light rising sand blew during several days over seattered places in the Western Desert, Upper Egypt and Red Sea districts.

PRESSURE DISTRIBUTION

The most outstanding features of pressure distribution over the synoptic surface charts during this month were :

- The Atlantic anticyclone and its east and south east extensions.
- Deep low pressure systems through North Europe.
- Secondary depressions through the Mediterranean and its vicinities.
- A ridge of high pressure over the Mediterranean and NE Africa.
- Complex monsoon low pressure over the Arabian gulf, Arabia and North Sudan.

During this month, four secondary depressions developed over the Mediterranean and its vicinities. The first depression appeared over Greece on the 1st, moved northeastwards and passed through the Black Sea area on the 3rd. The second depression developed over the gulf of Genewa on the 4th; proceeded slowly eastwards and passed through the Black Sea on the 8th. The third and fourth

depressions formed over Central Mediterranean on the 14th and 25th, moved northeastwards and passed through Asia Minor on the 16th and 27th respectively.

The monsoon low pressure trough over the Arabian gulf experienced northwestward elongation through Asia Minor five times during this month. Four of these elongations were due to the transit of the above mentioned four Mediterranean secondary depressions, while the 5th associated the transit of a northern low pressure trough north of the Black Sea on the 22nd.

As a result of these elongations of the monsoon trough through Asia Minor, the barometric pressure over Egypt showed five corresponding falls reaching its minima round the 3rd, 8th, 16th, 22nd and 27th respectively.

The northwestward elongations of the monsoon trough were followed by the extension of high pressure over East Mediterranean and NE Africa, causing corresponding rises in the barometric pressure over Egypt which reached its maxima round the 5th, 10th, 20th, 26th and 30th respectively.

The most important pressure systems over the synoptic upper air charts were:

- Two deep upper lows over North Russia and North Atlantic.
- Secondary upper troughs or lows through the Mediterranean and its vicinities, passing through East Mediterranean and north of Egypt on the 4th, 11th, 19th and 23rd.

SURFACE WIND

The prevailing winds during this month were light to moderate in general and blew from directions between NW, NE. Winds became fresh to strong during several days over scattered places mainly in the Western Desert, Upper Egypt and Red Sea districts.

TEMPÉRATURE

Maximum air temperature showed large departures above normal most of this month. Departures above normal were appreciable in general during the second & third heat waves and slight to moderate during the other heat waves. During the mild periods, maximum air temperature was slightly below normal in general. Maximum air temperature values ranged generally between 30°C

& 40°C in the northern parts, between 34°C & 44°C in the middle parts and between 40°C & 47°C in the southern parts.

The absolute maximum air temperature for the month was 47.9°C recorded at Siwa on the 15th.

Departure of minimum air temperature above normal was rather similar to departure of maximum air temperature, though it was less in magnitude. Minimum air temperature values ranged generally between 18°C & 24°C in the northern and middle parts and between 22°C & 28°C in the southern parts.

The absolute minimum air temperature for the month was 13.6°C recorded at Dakhla on the 7th.

PRECIPITATION

No rain was reported during this month allover the Republic.

Cairo, March 1972

Chairman (M. F. TAHA)

Board of Directors

ا دد

Table A 1.—MONTHLY VALUES OF THE ATMOSPHERIC PRESSURE, AIR TEMPERATURE, RELATIVE HUMIDITY, BRIGHT SUNSHINE DURATION & PICHE EVAPORATION JUNE — 1969

		spheric				Air T	'emperatu	re °C				Rela	ative	Brig	ght Sunsh	ine	mms.
		re (mbs) S.L.	Maxir	num	Mini	mum		Dry	Bulb	Wet	Bulb	Humic	lity %	Dura	ation (Ho	ırs)	
STATION	Mean	D.F. Normal or Average	(A) Mean	D.F. Normal or Average	(B) Mean	D.F. Normal or Average	$\frac{A+B}{2}$	Mean	D.F. Normal or Average	Mean	D.F. Normal or Average	M ean	D.F. Normal or Average	Total Actual	Total Possible	%	Piche Evaporation Mean
dallum	1011.5	-0.8 -0.7 -0.2 -0.5 -	32.0 30.2 31.0 27.6	+2.5 +2.2 +2.6 -0.9	21.5 19.9 20.9 23.1	+1.7 +1.7 +0.7 +0.7 —	26.8 25.0 26.0 25.4	26.3 24.9 25.5 26.0	+1.6 +1.6 +1.3 +1.0	19.8 20.2 20.8 21.9	+0.1 +0.6 +0.3 +0.5	53 63 64 68 —	-8 -6 -7 -3 -	306.7 366.2 —	424.1 424.1 ————————————————————————————————————	86 86 —	10.0 8.5 7.8 8.9
Canta	1011.3	+0.2	35.3	+1.3	19.8	+2.4	27.6	27.3	+1.4	2 0.2	+0.6	49	-4	372.4	422.4	88	8.4
Cairo (A)	1010.4	-0.4	35.8	+1.1	21.0	+0.9	28.4	28.2	+1.0	19.7	+0.1	4 2	—4				21.8
Fayoum (A) Minya (A) Assyout (A) Luxor (A) Aswan (A)	1008.5 1006.4	-0.6 -0.4 -0.3 -0.4	38.3 38.4 39.2 43.2 43.3	+2.3 +2.0 +1.5 +2.2 +1.1	20.9 20.2 22.5 23.5 25.5	+1.0 +1.2 +0.9 +0.9 +1.3	30.0 29.3 30.8 33.4 34.4	29.6 29.4 30.9 33.5 34.5	+0.7 +1.6 +0.9 +0.9 +0.6	19.9 19.5 18.9 20.2 17.5	$+0.4 \\ +0.5 \\ +0.8 \\ +0.9 \\ 0.0$	36 35 27 25 11	$ \begin{array}{r} -1 \\ -5 \\ +1 \\ +2 \\ -1 \end{array} $	376.9 — — —	416.1 — — —	90 - - -	11.3 18.7 24.8 14.2 32.2
iwa	1010.6 1010.3 1011.3 1009.0 1007.6	$ \begin{array}{r} -1.2 \\ +0.4 \\ -0.2 \\ +0.2 \\ -0.2 \end{array} $	39.1 39.1 39.1 40.2 41.5	+1.8 +2.6 +1.4 +1.7 +2.3	21.6 22.0 21.6 23.0 25.1	+2.2 +2.5 +1.4 +0.5 +1.9	30.4 30.6 30.4 31.6 33.2	30.8 31.0 30.7 32.1 33.6	+1.5 +1.8 +1.2 +1.0 +1.1	18.6 19.2 17.9 18.2 17.7	+0.3 +0.8 +1.0 +1.0 -0.3	26 28 23 19	$ \begin{array}{r} -4 \\ -2 \\ +1 \\ +1 \\ -2 \end{array} $	367.1 — — — (327.2)	416.8 — — — — (354.9)	88 — — — (84)	17.7 14.2 18.9 29.1 32.3
for	1006.4 1006.4	-0.4 -0.7	33.7 32.4	- +1.7 0.0	25.4 26.6	- +1.8 +1.1	29.6 29.5	29.9 29.4	+1.3 +0.2	21.4 21.9	- +1.0 +1.1	 44 49	 0 +5	-	- - -	111	20.0 21.8

Note.—Total number of records for the sunshine at Kharga was 26 days only.

Table A 2.- MAXIMUM AND MINIMUM AIR TEMPERATURES

JUNE -- 1969

			М	aximum	Temper	sture °C	;				s Min.			M inin	num Tem	perature	°C		
Station	Highest	Date	Lowest	Date	No.	of Day	ys with	Max-To	emp.	Mean	Dev. From Normal	Highest	Date	Lowest	Date	N		ays with Temp.	t h
	Hig	a —	o ₁	А	>25	>30	>35	>40	>45	Ϋ́	Dev. Noi	Hig	Ä	Lo	A	<10	< 5	<0	<
Sallum	47.3 45.2 39.0 39.5	15 15 15 16 —	25.7 28.7 26.8 26.2 —	5 9 9 6	30 30 30 30 —	17 8 13 9	6 4 5 1 —	4 3 0 0	2 1 0 0	21.5 — 17.2 22.6 —		28.4 27.0 24.1 25.2 —	12 15 16 15 —	17.3 15.8 15.8 20.4	10 6 7 7	0 0 0 0 -	0 0 0 0 0 -	0 0 0 0 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Tanta	42.2	16	29.1	3 ()	30	29	14	3	,			24.3	16	16.5	7	0	0	0	0
Cairo (A)	45.4	16	30.4	3 0	30	30	17	3	1	_	_	25.2	15	17.7	7	0	0	0	0
Fayoum	45.6 45.6 47.4 47.5 46.8	16 16 16 17 16	33.5 32.7 33.0 39.1 39.2	30 30 30 19 25	30 30 30 30 30	30 30 30 30 30 30	25 27 27 27 30 30	10 9 13 26 28	1 1 2 7 7	15.4 18.4 20.7 19.6	— — — —	23.9 24.0 27.9 26.8 28.6	28 17 16 28 29	16.8 15.6 18.7 20.1 22.6	7 7 7 20 30	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
Siwa Bahariya	47.9 47.6 46.6 47.1 47.5	15 16 16 16 16	32.6 33.5 33.5 35.2 36.5	30 30 30 30 30	30 30 30 30 30	30 30 30 30 30	25 27 27 30 30	10 11 13 15 20	2 2 1 2 4	18.2 20.4 21.5 	 	26.1 23.9 26.4 31.6 31.2	15 16 16 15	17.4 17.5 17.9 13.6 15.9	10 10 7 7 8	0 0 0 0	0 0 0 0	0 0 0 0	000000000000000000000000000000000000000
or	38.9 36.6	16 15	31.1 39.3		30 30	30 30	- 7 4	0 0	0 0	23.3	 - -	30.0 29.4	17 17	21.9 24.0	- 8 1	0	- 0 0	0 0	-

		Mean	Sky Con	ver Oct.					Rain	fall mms.						
Station	00	06	12	18	Daily	Total	Dev. From		r. Fall ne day	1	Vumber	of Day	s with	Amoun	t of Ra	in
	U.T.	U.T.	U.T.	U.T.	Mean	Amount	Normal	Amount	Date	<0.1	≥0.1	≥1.0	≥5.0	≥10	≥25	≥50
Sallum	1.1 1.2 1.4 -	1.0 2.7 2.6 1.4	0.9 1.6 1.5 0.8	1.8 1.9 1.6 —	0.8 1.4 1.3	0.0 0.0 0.0 0.0 -	-0.1 -3.1 -Tr. 0.0	0.0 0.0 0.0 0.0 -	 	0 0 0 0	0 0 0 0 -	0 0 0 0 -	0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0
Tanta	0.1	1.5	0.9	0.4	0.7	0.0	0.0	0.0		0	0	0	0	0	0	0
Cairo (A)	0.8	2.0	0.7	0.4	0.8	0.0	-0.2	0.0	-	0	0	0	0	0	o	0
Fayoum (A) Minya (A) Assyout (A) Luxor (A) Aswan (A)	$\begin{array}{c} \textbf{0.1} \\ \textbf{0.0} \end{array}$	0.3 0.1 0.0 0.1 0.1	0.1 0.1 0.1 0.3 0.5	0.2 0.1 0.0 0.3 0.5	0.0 0.0 0.1 0.3	0.0 0 0 0.0 0.0 0.0	0.0 0.0 Tr.1 0.0 0.0	0.0 0.0 0.0 0.0 0.0	- - - -	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0
Siwa	0.0 0.0 - 0.0 0.1	0.6 0.1 0.0 0.0 0.1	0.6 0.2 0.0 0.0 0.0	0.4 0.0 0.0 0.0 0.0	0.3 0.0 - 0.0 0.1	0.0 0.0 0.0 0.0	0.0 -0.2 0.0 -Tr. 0.0	0.0 0.0 0.0 0.0 0.0		0 0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
Tor	0.0 0.1	0.0	0.2 0.1	0.2 0.2	0.1 0.1	0.0 0.0	- 0.0 Tr.	0.0 0.0	=	0	0 0	0 0	-00		- 0 0	- 0

Table A 4.—DAYS OF OCCURRENCE OF MISCELLANEOUS WEATHER PHENOMENA

JUNE -- 1969

		Precip	pitation				metres			Vis	ising etres	storm etres			
STATION	Rain	Snow	Ice, Pellets	Hail	Frost	Thunderstorm	Mist Vis ≥ 1000	Fog Vis <1000 metres	Haze Vis ≥1000 metres	Thick Haze Vis	Dust or Sandrising Vis ≥1000 metres	Dust or Sandstorm Vis <1000 metres	Gale	Clear Sky	Cloud y Sky
Sallum	0 0 0 0	0 0 0	0 0 0 -	0 0 0	0 0 0 -	0 0 0 -	0 0 0 0	0 1 0 0 -	0 0 1 0 -	0 0 0 -	0 3 0 0 -	0 0 0 0 -	0 0 0 -	27 19 19 — —	0 0 0 - -
Canta	0	0	o	0	0	0	0	0	0	0	0	0	0	29	0
Cairo (A)	0	o	0	0	0	0	8	0	3	0	0	0	0	27	0
finys (A) ussyout (A) usor (A) uswan (A)	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 5 0	0 0 0 0	0 2 0 6	0 0 0 0	0 0 0 0	30 30 26 26	0 0
iwa	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 12	0 0 0 0	0 0 0 0	30 30 30	 0 0
or	- o	- 0 0	0 0	- 0 0	_ 0 0	- 0 0	- 0 0	 0 0	 0 0	 0 0	- 8 0	 0 0	- 0 0		 0 0

Table A 5. -NUMBER IN HOURS OF OCCURRENCES OF CONCURRENT SURFACE
WIND SPEED AND DIRECTION RECORDED WITHIN SPECIFIED RANGES

JUNE — 1969

	PE PE	urs)	lours)			Nur	nber			of occ					wing	from	the
Station	Calm (hours)	Variable (hours)	Unrecorded (hours)	Wind speed in knots	345 / 014	1	1	1	1	1	16 <i>t</i>	1 /	1/	1	1 .	35 31 34	1 =
Sallum	. 13	0	1	1—10 11—27 28—47 ≥ 48 All speeds	45 17 0 0 62	85 36 0 0	62 4 0 0 66	46 0 0 0 46	59 0 0 0 59	11 0 0 0 11	11 0 0 0 11	9 19 0 0 28	15 19 6 0 34	25 6 0 0 31	70 18 0 0 88	60	527 179 0 0 70
Mersa Matruh	26	0	0	1—10 11—27 28—47 ≥48 All speeds	57 10 0 0 67	28 0 0 0 28	13 4 0 0 17	19 4 0 0 23	28 6 0 0 34	29 1 0 0 30	13 15 0 0 28	8 22 0 0 0 30	24 6 0 0 30	75 1 0 0 76	56 81 0 0 137	74 120 0 0 194	424 270 0 0 694
Alexandrica	9	0	19	$ \begin{array}{c c} 1 - 10 \\ 11 - 27 \\ 28 - 47 \\ \geq 48 \\ \text{All speeds} \end{array} $	41 0 0 0 41	27 0 0 0 27	8 0 0 0 8	10 0 0 0 10	22 0 0 0 22	24 0 0 0 0 24	21 0 0 0 21	5 0 0 0 5	10 0 0 0	0 0	180 34 0 0	220 27 0 0 247	631 61 0 0
Port Said	0	0	27 6	1—10 11—27 28—47 ≥ 48 All speeds	37 7 0 0 44	20 0 0 0 0 20	9 0 0 0 9	8 0 0 0 8	7 1 0 0 8	7 0 0 0 7	7 0 0 0 0 7	6 0 0 0 6	1 0 0	28 19 0 0 47	29 65 0 0 94	95 68 0 0 163	283 161 0 0 444
Tanta	41	0	0	1—10 11—27 28—47 ≥ 48 All speeds	75 1 0 0 76	0 0	0 0	27 0 0 0 0 27	4 0 0 0 4	3 0 0 0 3	0 0	0 0	0 0	0 0	5 0 0	116 0 0 0 116	673 6 0 0 679
Cairo	36	1	0	1—10 11—27 28—47 ≥48 All speeds	64 0 0	93 3	22 0 0	33 2 0 0 35	5 7 0 0	1 2 0 0 3	2 0 0 0 2	2 0 0 0 2	2 0 0	2 0 0	50 9 0 0 59	64 56 0 0	425 258 0 0 683
Fayoum	15	0	5	11—27 28—47 ≥48	5 0 0	39 0 0	23 0 0 0	4 0 0 0 4	2 0 0 0 2	2 0 0 0 2	0 0 0 0 0	1 0 0 0 1	8 0 0 0 8	0 0	22 0 0 0 0	20 0 0 0 20	656 44 0 0
Minya	21	0	0	11—27 28—47 ≥ 48	313 0 0	27 18 0 0 45	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 0 0 0 1	0 0 0 0	3 0 0 0 3	0 0 0 0	3 0 0 0 3	35 3 0 0 38	\$65 \$34 0 0 659

Table A 5. (contd.)—NUMBER IN HOURS OF OCCURRENCES OF CONCURRENT SURFACE WIND SPEED AND DIRECTION RECORDED WITHIN SPECIFIED RELIGIES

JUNE - 1969

	TB)	ure)	tours)			Num	ber in			occur					ing f	om t	he
Station	Calm (houre)	Variable (hours)	Unrecorded (hours)	Wind speed in knots	345 / 014	1	045 / 074	075 / 104	105 / 134	1	1	195 / 224	225 / 251	1	/	1	irec
Assyout	0	0	0	1—10 11—27 28—47 ≥48 All speeds	18 27 0 0 45	8 16 0 0 24	4 0 0 0 4	0 0 0 0	0 0 0 0	0 0 0	1 0 0 0 1	1 1 0 0	36 0 0 0 3 6	191 1 0 0 192	235 53 0 0 288	60 68 0 0	554 166 0 0 720
Luxor	6		0	1—10 11-27 28—47 ≥48 All speeds	48 3 0 0 51	18 4 0 0 22	13 2 0 0 15	11 0 0 0 11	21 0 0 0 21	47 0 0 0 47	88 0 0 0 88	33 0 0 0 33	0 0 0	1(2 8 0 0 110	157 19 0 0	75 0 0 0 75	678 36 0 0 714
Aswan	2	6	0	1—10 11—27 28—47 ≥48 All speeds	110 25 0 0 135	172 84 0 0 256	8 0 0 0 8	2 0 0 0 2	1 0 0 0 1	4 0 0 0 4	3 0 0 0 3	4 0 0 0 0 4	7 1 0 0 8	38 2 0 0 40	35 1 0 0 36	139 76 0 0 215	523 189 0 0 712
Siwa	24	8	0	1—10 11—27 28—27 ≥48 All speeds	28 2 0 0 30	89 27 0 0 116	94 6 0 0 100	88 3 0 0 91	43 10 0 0 53	35 1 0 0 36	18 7 0 0 25	14 0 0 0 14	18 0 0 0 18	33 1 0 0 34	61 12 0 0 73	86 12 0 0 98	607 81 0 0 \$88
Dakhla	2	1	0	1—10 11—27 28—47 ≥48 All speeds	61 22 0 0 83	50 87 0 0	13 20 0 0 33	8 1 0 0 9	3 0 0 0 3	2 0 0 0 2	18 0 0 0 18	38 0 0 0 38	43 0 0 0 43	54 () () () () 54	80 0 0 0 80	155 62 0 0 217	525 192 0 0 717
Kharga	2	0	3	1—10 11—27 28—47 ≥48 All speeds	86 276 0 0 362	40 24 0 0 64	7 2 0 0	1 0 0 0 1	2 0 0 0 2	0 0 0 0	3 0 0 0 3	5 0 0 0 5	8 0 0 0 8	17 0 0 0 17	32 1 0 0 33	142 69 0 0 211	343 372 0 0 715
Hurghada	1	0	0	1—10 11—27 28—47 ≥48 All speeds	33 189 1 0 223	31 52 0 0 83	7 0 0 0 7	3 0 0 0 3	5 0 0 0 5	4 0 0 0 4	4 0 0 0 4	0 0 0 0	1 0 0 0	2 0 0 0	33 36 0 0 69	66 244 8 0 318	189 521 9 0 719
Quacir	0	0	1	1—19 11—27 28—47 ≥48 All speeds	108 217 0 0 325	36 7 0 0 43	10 0 0 0	7 0 0 0 7	3 0 0 0 3	5 0 0 0 5	6 0 0 0 6	3 0 0 0 3	3 0 0 0 3	13 0 0 0 13	0 0	123 133 0 0 256	362 357 0 0 719

UPPER AIR CLIMATOLOGICAL DATA

Table B 1.- MONTHLY MEANS AND MONTHLY ABSOLUTE HIGHER & LOWER VALUES OF ALTITUDE, AIR TEMPERATURE & DEW POINT AT STANDARD AND SELECTED PRESSURE SURFACES.

JUNE -- 1969

Station	Pressure Surface	Alti	tude of Pres	ssure Surfac	e (;pm)		Тетре	erature (°C)		Dew	Point (°C)
82	Millibar	N	Mean	Highest	Lowest	N	Mean	Highest	Lowest	N	Mean
Mersa Matruh (A) 0000	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20 10	28 28 28 28 28 28 26 25 21 118 12 10 10	1008mb. 102 1521 3170 4:34 5873 7564 9620 10846 12290 14099 16571 18754 19697 20822 22250 24062	1012mb. 132 1575 3243 4515 5905 7672 9756 11001 124:2 14240 16644 18900 19841 20983 22393 24106	# 1005mb. 72 1±87 3111 4358 5788 7468 9506 10734 12170 13967 16500 18600 19624 20738 22158 23988 ——	28 28 28 28 28 28 26 25 23 21 18 12 10 10 8 4 3	22.5 23.0 20.8 10.3 1.1 -9.0 -21.3 -37.4 -47.2 -56.0 -60.7 -65.4 -61.7 -63.0 -60.6 -57.3 -55.0	28.6 32.2 28.0 14.7 5.6 -4.0 -15.6 -30.9 -41.4 -48.6 -55.6 -61.8 -60.8 -57.3 -56.8 -54.9	19.0 18.9 14.1 6.4 -3.5 -16.1 -24.9 -42.2 -50.8 -60.3 -68.4 -72.4 -68.2 -65.8 -64.6 -57.7 -55.2	28 28 28 28 28 28 25 25 22 19 3	17.9 18.2 5.9 -3.5 -11.8 -22.1 -33.7 -48.4 -57.1 -64.8 -71.4
Helwan 0000 UT	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	28 28 27 27 26 23 22 20 17 15 11 9 8 7 6	994mb. 1504 3155 4420 5864 7556 9619 10863 12325 14140 16598 18720 19654 20793 22212 24076 26737	998mb. 1535 3197 44 6 5923 7629 9719 10985 12462 14268 16674 18800 19726 20866 20279 25129 2-791	991mb. 1475 3107 3364 5790 7442 9455 10672 12120 13960 16465 18620 19532 20055 22061 24023 26095	30 	23.5 	29.6 	19.8	30 26 26 26 26 25 21 20 19 5	13.7 1.2 -9.0 -16.9 -26.5 -36.7 -50.2 -57.2 -64.6 -68.0
Авчап (А) 0000	Surface 1000 850 700 600 500 400 300 250 200 150 70 60 50 40 30 20 10	30 30 30 30 30 30 30 30 29 28 28 27 26 22 15 15 9 9	984mb. 48 1495 3167 4443 5901 7619 9716 10022 12467 14288 16712 18812 19713 20869 22255 24090 26730 31284	986mb. 70 1520 3210 4497 5970 7693 9823 11104 12604 14430 16829 18910 19809 20958 22324 24171 26836	9s1mb, 26 1477 3142 4404 5852 7553 9606 10851 12338 14155 16587 18690 19651 20830 22152 23956 26576	30 30 30 30 30 30 29 28 28 27 26 22 15 15 9 9	29.5	33.8 - 31.9 17.3 7.6 -0.6 -12.3 -28.0 -36.9 -47.4 -59.3 -68.4 -65.3 -60.2 -57.5 -55.4 -51.2 -42.8	26.0 9.9 1.2 -11.3 -21.5 -35.7 -44.8 -53.0 -65.2 -78.9 -74.3 -66.4 -66.0 -60.7 -57.0 -50.0	30 30 30 30 30 30 27 27 27 1 ————————————————————————————	1.0 -2.8 -11 7 -18.7 -28.6 -37.3 -49.0 -56.3 -64.1 -71.8

^{*} The atmospheric pressure corrected to the elevation of the radiosonde stations.

UPPER AIR DATA

Table B 1. MONTHLY MEANS AND MONTHLY ABSOLUTE HIGHER & LOWER VALUES OF ALTITUDE, AIR TEMPERATURE & DEW POINT AT STANDARD AND SELECTED PRESSURE SURFACES.

JUNE - 1969

Climatological upper air data for Mersa Matruh, Helwan & Aswan upper air stations at 1200 U.T. are missing since number of days of release of radiosonde sets at these stations are less than the permissible number needed for calculating or processing monthly values.

Table B 2.—MEAN AND EXTREME VALUES OF THE FREEZING LEVEL AND THE TROPOPAUSE; THE HIGHEST WIND SPEED IN THE UPPER AIR

JUNE - 1969

Climatological upper air data for Mersa Matruh, Helwan & Aswan upper air stations at 1200 U.T. are missing since number of days of release of radiosonde sets at these stations are less than the permissible number needed for calculating or processing monthly values.

Table B 3. NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES

JUNE - 1969

Climatological upper air data for Mersa Matruli, Helwan & Aswan upper air stations at 1200 U.T. are missing since number of days of release of radiosonde sets at these stations are less than the permissible number needed for calculating or processing monthly values.

Table B 2.—MEAN AND EXTREME VALUES OF THE FREEZING LEVEL AND THE TROPOPAUSE. THE HIGHEST WIND SPEED IN THE UPPER AIR

JUNE - 1969

						Free	ezing le	vel							First	tropor	anse				High	est w	ind sp	eed
				Mean]	Highest			Lowest			Mean			Highest	t		Lowest	t	(m	P.)		knots
	Station		Altitude (gpm)	Pressure (mb.)	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Dew Point (°C)	Altitude (gpm)	Pressure (mb.)	Temperartue (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Direction (000—300)°	Speed in kn
			(N)	(N)	(N)							(N)	(N)	(N)										
1	M. Matruh (A	A)	4590 (28)	589 (2 8)	-13.4 (28)	5270	540	27.9	3 95 0	€44	_ 3.7	12652 (13)	180 (13)	-60.4 (13)	14200	151	-68.6	11850	189	_57.1	14120	_	245	112
0000 U.T.	Helwan		4739 (27)	566 (27)	—18.7 (26)	5500	525	-20.3	4070	624	-13.8	14 3 34 (12)	153 (12)	-64.2 (12)	17920	81	73.2	10400	260	-48 2	1 3 6 4 5	106	225	142
	Aswan (A)	5111 (30)	5 52 (30)	-23.0 (30)	5700	516	-25.9	4570	590	-12.8	168 6 8 (25)	98 (25)	-74.9 (25)	17920	81	-81.0	14670	139	-68.0	13625	164	240	92

N= The number of cases the element has been observed during the month.

Table B 3.-NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPAED AT THE STANDARD AND SELECTED PRESSURE SURFACES

MERSA MATRUH (A) - JUNE 1969

					Wind	between sp	ecified ran	ges of dire	etion (000	- 3 60°)				Calm	of (N)	wind tots)
Тіте	Pressure Surface (Millibar)	345 / 014	015 / 044	045 / 074	075 / 104	105 / 134	135 / 164	1:5 / 194	195 / 224	225 / 254	255 / 284	285 / 314	315 / 344	of nds	Number ations (T	alaı (Kı
		N (ff) m	N (ff)	N (ff)	N (ff)	N (ff)	N (ff) m	N (ff)	N (ff) m	N (ff)	N (ff)	N (ff) m	N (ff) m	Number wi	Total Observe	Mean Se Speed
0000 U.T.	Suface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	3 7 3 10 7 17 1 34 3 33 2 22 2 10 1 35 2 28 1 19 0 — 0 — 0 — 0 — 0 — 0 —	4 15 0 — 0 — 0 — 0 — 0 — 0 —	0	0	1 9 1 14 1 6 0 — 1 4 0 — 0 — 0 — 0 — 1 10 — 1 10 — — — — — —	2 9 2 10 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0	3 9 2 10 0 0 0 1 4 0 0 0 1 15 0 0 0 0 1 15 0 0 0 0 0 0 0 0 -	1 20 1 26 1 12 0 — 0 — 0 — 0 — 0 — 1 11 1 25 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 —	1 2 0 — 2 26 2 30 2 42 2 35 2 28 2 40 2 19 6 43 5 38 2 24 0 — 0 0 — — — — — — — — — — — — — — —	9 6 3 11 2 18 7 26 6 35 8 38 12 40 12 54 9 42 13 51 11 55 2 38 0 — 0 — 0 — 0 —	7 12 9 14 7 24 6 29 7 28 7 28 7 28 7 41 6 43 4 48 1 43 3 30 0 — 1 14 0 — 0 —	1 10 5 11 4 20 9 25 6 7 28 2 42 1 62 1 42 1 52 0 — 0 — 0 — 0 —	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	28 28 28 28 28 26 25 21 21 118 11 7 5 4 2	9 1 : 19 29 30 33 43 39 46 50 33 17 11 14 18

N = The number of cases the element has been observed during the month.

T N = The total number of cases the wind has been observed for all directions during the month.

Table B 3. (contd.)—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES HELWAN — JUNE 1969

						-		w	ind b	etwee	n spe	ecified	l rang	ges o	dire	ction	(000	36 0	°)							Calm	er of (T.N)	wind ts)
Time	Pressure Surface (Millibar.)	34 01		0	15 14	04	1		75 / 04)5 / 34	١,	35 / 64		35 / 94	19 / 22	1	22	1		55 / 84	28 31	35 4	31	/	of n ds	Numb ations	alar (Kne
		N	(ff) m	N	(ff) m	N	(ff) m	N	(ff) m	N	(ff)	N	(ff) m	N	(ff) m	N	(ff) m	N	(fT) m	N	(ff)	N	(ff) m	N	(ff) m	Number wii	Total Observ	Mean Sc Speed
0000 U. T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20 10	15 13 5 4 0 0 0 0 0 0 0 0 0	6 -24 39 24 	5 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 16	5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 16 - - - - - - - - - -	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7	1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0	3 	0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	34 14	0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10	0 1 4 2 0 4 4 3 3 2 1	22 16 21 -25 46 60 50 50 	0 -0 5 -1 8 7 7 9 8 3 0 	23 28 3,5 55 91 73 87	0 5 5 9 10 8 6 1 3 0 1	21 24 25 28 31 44 34 40 ——————————————————————————————	0 3 6 4 2 2 3 0 2 0 0 2 0 -	33 27 32 26 24 31 	3 3 2 2 0 0 0 0 0	4 23 22 44 19 — — — — — —	1 0 0 0 0 0 0 0 0 0	30 28 28 27 25 23 20 13 16 5 2	6 23 26 28 28 28 36 46 79 56 72 43 —

N = The number of cases the element has been observed during the month.

TN=The total number of cases the wind has been observed for all directions during the month.

Table B 3 (contd.)—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES.

ASWAN (A) — JUNE 1969

					Wind	between s	specified ra	nges of dir	rection (00	0-360)°				calm	r of	wind (fs)
Tim•	Pressure Surface Millibar	345 / 014	015 / 044	045 / 074	075 / 104	105 / 134	135 / 164	165 / 194	195 / 224	225 / 254	255 / 284	285 / 314	315 / 344	ber of cwinds	number ations (scalar v
		N (ff)	N (ff) m	N (ff) m	N (ff) m	N (ff) m	N (ff)	N (ff)	N (ff) m	N (ff)	N (ff)	N (ff)	N (ff)	Num	Total observ	Mean spe
00.00 U.T.	Surface	12	7 8 	0	0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 —	1 7 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 1 15 7 13 C - 2 2 26 0 - 3 2 41	0	0	0	0 — 0 — 3 11 7 24 8 20 8 27 17 34 10 40 15 47 11 39 3 19 0 — 10 — 10 — 10 — 10 —	2 10 1 11 6 14 2 19 3 11 7 20 5 30 7 35 5 45 5 61 2 20 2 44 0 — 0 — 0 —	2 10	6 12 4 10 3 15 1 20 2 10 0		29 29 28 28 27 26 25 24 22 15 10 9 8 8	10

N. = The number of cases the wind has been observed from the range of direction during the month.

TN = The total number of cases the wind has been observed for all directions during the month.

REVIEW OF AGRO-METEOROLOGICAL STATIONS

EL-KASR _ JUNE 1969

This month was warmer than normal. The month was characterized by three heat waves on the 7th, during the period (11th — 15th) and on the 21st respectively. The second heat wave was the most excessive, and yielded the highest maximum air temperature for the month (45.5°C) on the 15th.

The extreme maximum soil temperatures were higher than the corresponding values of last June at depths between 2 and 50 cms., and the differences ranged between 2.8°C at 2 cms. and 0.2°C at both 5 and 10 cms. At 100 cms. depth the extreme maximum soil temperature was 0.3°C lower than last June. The extreme minimum soil temperatures were lower than last June at all depths between 2 and 100 cms. with differences ranging between 2.0°C at 20 cms. and 0.3°C at 100 cms.

The daily mean Pan evaporation was 1.5 mms. less than the corresponding value of June 1968. The daily mean actual duration of bright sunchine was slightly more (0.1 hour) than the corresponding value of June 1968.

TAHRIR — JUNE 1969

This month was slightly warmer than last June. The month was characterized by two excessive heat waves during the periods (1st — 8th) and (12th — 16th), and two light heat waves on the 21st and 27th. The second heat wave was the most excessive, and yielded the highest maximum air temperature for the month (43.8°C) on the 16th.

The extreme maximum soil temperatures were slightly lower (0.3°C) than the corresponding values of last June at both 2 and 100 cms. At other depths between 5 and 50 cms, the extreme soil maxima were higher than last June with small differences ranging between 1.0°C at 20 cms, and 0.1°C at 50 cms. The extreme minimum soil temperature was slightly higher (0.2°C) than last June at 2 cms, depth. At all other depths between 5 and 100 cms, the extreme soil minima were lower than last June with differences ranging between 1.5°C at 5cms, and 0.6°C at 20 cms.

The daily mean pan evaporation was 0.72 mms more than the corresponding value of June 1968. The daily mean actual duration of bright sunshine was 0.8 hour more than the corresponding value of June 1968.

BAHTIM _ JUNE 1969

This month was slightly cooler than last June. The month was characterized by two excessive heat waves during the periods (1st — 8th) and (12th — 16th), and two light heat waves on the 22nd and 27th. The second heat wave was the most excessive, and yielded the highest maximum air temperature for the month (46.4°C) on the 16th.

The extreme maximum soil temperature was slightly lower (0.3°C) than last June a 2 cms. depth. At other depths between 5 and 100 cms., the extreme soil maxim were higher that last June apart from the 50 cms. depth where its value was the sam as last June, the differences ranged between 2.6°C at 5 cms. and 0.5°C at 100 cms. The extreme minimum soil temperatures were lower than last June at depths between 2 and 10 cms. and also at 50 cms. with differences ranging between 2.2°C at 2 cms. and 0.6°C at 50 cms. At 20 cms. the extreme minimum soil temperature was the same as last June, and at 100 cms. it was slightly higher (0.3°C).

The daily mean Pan evaporation was 0.66 mm. less than the corresponding value of June 1968. The daily mean actual duration of bright sunshine was 0.8 hour most than June 1968.

KHARGA - JUNE 1969

This month was warmer than normal. The month was characterized by four he waves during the periods (1st — 9th), (11th — 17th), (22nd — 23rd) and (26th — 28th The second heat wave was the most excessive and yielded the highest maximum a temperature for the month (47.5°) on the 16th.

The extreme maximum soil temperatures were lower than last June at shallo depths between 2 and 10 cms. and the differences ranged between 1.1°C at 5 cms. at 0.5°C at 10 cms. At deeper depths between 20 and 100 cms. the extreme soil maxim were higher than last June with differences ranging between 0.1°C at 20 cms. and 0.6°C at 50 cms. The extreme minimum soil temperatures were lower than last June at depth between 2 and 20 cms. with differences ranging between 5.0°C at 2 cms. and 0.6°C at 20 cms. At both 50 and 100 cms. depths the extreme soil minima were slightly higher (0.2°C) than last June.

The daily mean Pan evaporation was 0.72 mm. less than the corresponding value of June 1968. The daily mean actual duration of bright sunshine was 0.6 hour most than the corresponding value of June 1968.

Table C 1.—AIR TEMPERATURE AT 12 METRES ABOVE GROUND

JUNE — 1969

		Air Te	mperat	ire (°C)		Mean Duration in hours of daily air temperature above the following values											
STATION			Mean of the day	Night Day time mean		_5°C	0°C	5°C	10°C	15°C	20°C	25°C	30°C	35°C	40°C	45°C	
			{													}	
El Kasr	29.9	19.3	25.1	22.2	26.0	24.0	24.0	24.0	24.0	24.0	20.8	12.5	2.4	1.2	0.6	0.08	
Tahrir	35.7	19.0	26.9	22.6	28.6	24.0	24.0	21.0	24.0	24.0	21.9	13.3	7.4	2.4	0.1	0.00	
Bahtim	36.0	17.7	26.7	22.6	28.6	24.0	24.0	24.0	24.0	24.0	20.0	13.1	8.2	2.7	0.3	0.03	
Kharga	41.5	25.1	33 .6	30.1	31,9	24.0	24.0	24.0	24.0	24.0	23.8	22.7	17.0	10.1	3.8	0.4	

Table C 2.—EXTREME VALUES OF AIR TEMPERATURE AT 1½ METRES ABOVE GROUND, ABSOLUTE MINIMUM AIR TEMPERATURE AT 5cms ABOVE GROUND OVER DIFFERENT FIELDS

JUNE - 1969

	Max.	Temp, at	$1\frac{1}{2}$ metro	es (°C)	Min.	Temp. at	l½ metre	es (°C)	Min. Temp. at 5 cms. above (°C)					
STATION	Hig	hest	Lov	vest	Hig	hest	Lov	vest	Dry	soil	Grass			
	Value Date		Value	Date	Value	Date	Value	Date	Value	Date	Value	Date		
El Kasr	45.5	15	25,4	10	26.8	14	14.7	2	10.8	2		_		
Tahrir	43.8	16	30.8	29,30	22.8	16	15.1	6	14.1	7	-			
Bahtim	46.4	16	3 0.7	30	21.2	16	14.4	7	11.0	7	_	_		
Kharga	47.5	16	36.5	30	31,2	16	15.9	8	13.0	8	_	_		

Table C 3.— (SOLAR+SKY) RADIATION, DURATION OF BRIGHT SUNSHINE, RELATIVE HUMIDITY AND, VAPOUR PRESSURE AT 1½ METRES ABOVE GROUND, EVAPORATION AND RAINFALL

JUNE -- 1969

179	Duration of Bright Sunshine (hours)					Relative Humidity				Vapo	our pr	essure	(mms)		Evaporation (mms)		Rainfall (mms)		
STATION	(Solar+Sky R tion gm. cal/	Total Actual monthly	Total Possible monthly	%	Mean of day	1200 U.T.	Lowest	Date	Mean of day	1200 U.T.	Highest	Date	Lowest	Date	Piche	Pan class A	Total Amou- nt Monthly	Max. Fall in one day	Date
	ĺ	1]	1	İ		l										
El Kasr	578.3	327.2*	425.5	85	71	61	18	7	16.5	17.2	21.8	1.4	5.6	7	9.4	9.58	0.0	_	_
Tahrir .	704.0	377.7	422.3	89	59	33	17	8	14.5	13.0	20.5	22	8.1	8	10.7	11.68	0.0		_
Bahtim .	722.8	370.2	421.8	87	54	29	4	8	13.1	11.8	19.2	26	6.5	7	14.1	13.17	0.0	-	-
Kharga	598.4	327.2†		1	20	13	4	8	7.4	7.3	14.5	25	1.8	8	32.3	25.07	0.0		_
	598.4	327.2	409.5	92	20	13	4	8	7.4	7.3	14.5	25	1.8	8	32.3	20.07	0.0		

^{*} Total for 27 days.

[†] Total for 26 days.

Table C 4. EXTREME SOIL TEMPERATURE AT DIFFERENT DEPTHS IN DIFFERENT FIELDS

JUNE -- 1939

STATION	er (L)		Extre		•	ature (°0	C) in do	y field		Ez		soil at di	•		•		graq
	Higheat Lower	2	5	10	20	50	100	250	300	2	5	10	20	50	100	200	3
El Kasr	H L	51.6 24.3	43.1 22.5	37.0 21.8	32.6 24.0	29.3 25.4	26.0 23.1	13.5 23.2				 		 			
Tahrir	H L	56.4 28.0	50.6 25.7	43.8 25.9	38.2 29.3	32.6 29.3	30.3 27.5	27.7 25.0	26.3 24.3	_		_	_	_	_	_	-
Bahtim	H L	57.7 27.9	47.0 27.4	40.2 27.5	34.4 29.9	30.9 27.6	28.8 26.2	25. 3 2 3 . 7	23.9 23.2	_	_	_	_	_	_	_	-
Kharga	H L	59.2 19.5	52.1 24.2	44.5 29.1	38.7 32.8	31.0 32.6	32.4 30.1	29.3 28.0	28.0 27.3		_	_	_	_		_	-

Table C 5.—SURFACE WIND

JUNE - 1969

		id Speed :	-		Days w	ith surfac	e wind s	peed at (1	0 metres)		Max, l→ me	
STATION	Mean of the day	Night time mean	Day time mean	≥10 (knots)	≥15 (knots)	>2) (kno(s)	≥25 (knots)	≥30 (knots)	≥ 35 (knots)	> 40 (knots)	Value (knot.)	Date
El Kasr	2.2	1.8	2.6									!
Tahrir	2.4	1.6	3.1	27	14	0	0	0	υ	o	27	4
Bahtim	2.8	1.7	3.9	30	13	0	0	0	0	0	23	13
Kharga	4.8	3. 8	5. 8	29	28	17	9	2	0	0	40	12
				ł	į.	1					1	

PRINTED IN ARAB REPUBLIC OF EGYPT BY THE GENERAL ORGANIZATION FOR GOVT. PRINTING OFFICES. CAIRO

First Under-Secretary of State

ALY SULTAN ALY

Chairman of the Board of Directors

MONTHLY WEATHER REPORT

VOLUME 12

NUMBER 7

JULY, 1969

ATMOSPHERIC SCIEN LIBRARY

SEP 6 1972

N.O.A.A.

U. S. Dept. of Commerce

U.D.C. 551, 506.1 (62)

PUBLICATIONS OF THE METEOROLOGICAL AUTHORITY OF THE ARAB REPUBLIC OF EGYPT—CAIRO

In fulfilment of its duties, the Egyptian Meteorological Authority issues serveral reports and publications on weather, climate and agro-meteorology. The principal publications are described on this page.

Orders for publications should be addressed to :

"Chairman of the Board of Directors, Meteorological Authority, Kubri-el-Qubbeh - CAIRQ".

THE DAILY WEATHER REPORT

This report is issued daily by the Meteorological Authority since the year 1901. It includes surface and upper air observations carried out by the relevant networks of the Republic at the principal hours of observations.

As from January 1968 this report was revised to include a condensed representative selection of surface and upper air observations besides the 1200 U.T. surface & 500 mb charts.

As from 1st January 1972, the Daily Weather Report will not be issued or distributed because it does not serve no longer any good purpose as it used to be in the past. The Meteorological Authority is ready to supply the recipients of the Report with any information used to be included in it, if they so desire.

THE MONTHLY WEATHER REPORT

First issued in 1909, the Monthly Weather Report served to give a brief summary of the weather conditions that prevailed over Egypt during the month, with a table showing the mean values for few meteorological elements and their deviations from the normal values. From 1954 to 1957 this report was in a rapid state of development and extension resulting into a voluminous report on January 1958 giving surface, upper air, and agro-meteorological data for Egypt.

As from January 1964, the Monthly Weather Report was pressed to give climatological data for a representative selection of synoptic stations.

THE AGRO-METEOROLOGICAL ABRIDGED MONTHLY REPORT

Gives a review of weather experienced in the agro-meteorological stations of Egypt as well as monthly values of certain elements.

THE ANNUAL REPORT

This report gives annual values and statistics for the various meteorological elements, together with a summary of the weather conditions that prevailed during all months of the year.

CLIMATOLOGICAL NORMALS FOR EGYPT

A voluminous edition was issued in March 1968 which brings normals and mean values up till 1960.

METEOROLOGICAL RESEARCH BULLETIN

First issued in January 1969 on a bi-annual basis. It includes research works carried out by members of staff of "The Meteorological Institute for Research and Training" and the Operational Divisions of the Meteorological Authority.

TECHNICAL NOTES

As from October 1970, the Meteorological Authority started to issue a new series of publications in the form of Technical Notes (non periodical) on subjects related to studies and applications of meteorology in different fields for the benefit of personnel working in these fields.

MONTHLY WEATHER REPORT

VOLUME 12

NUMBER 7

JULY, 1969

U.D.C. 551, 506.1 (62)

CONTENTS

		PAGE
	General Summary of Weather Conditions	l -2
	SURFACE DATA	
Table	A1.—Monthly values of the Atmospheric Pressure, Air Temperature, Relative Humidity, Bright Sunshine Duration and Piche Evaporation	3
,,	A2.—Maximum and Minimum Air Temperatures	4
"	A3.—Sky Cover and Rainfall	5
,,	A4.—Number of Days of Occurrence of Miscellaneous Weather Phenomena	6
••	A5.—Number in Hours of Occurrences of Concurrent Surface Wind Speed and Direction Recorded Within Specified Ranges	7.8
	UPPER AIR DATA	
Table	B1.—Monthly Means and Monthly Absolute Higher & Lower Values of Altitude, air Temperature & Dew point at Standard and Selected Pressure Surface	9,10
,,	B2.—Mean and Extreme values of The Freezing Level and The Tropopause; The Highest Wind Speed in The Upper Air	11
,,	B3.—Number of Occurrences of Wind Direction Within Specified Ranges and The Mean Scalar Wind Speed at the Standard and Selected Pressure Surfaces	12-14
	AGRO-METEOROLOGICAL DATA	
	Review of Agro-Meteorological Stations	15,16
Table	C1.—Air Temperature at 1½ Metres Above Ground	17
"	C2.—Absolute Values of Air Temperature at 1½ metres above Ground, Absolute Minimum Air Temperature at 5 cms. above Ground Over Different Fields.	17
11	C3.—(Solar + Sky) Radiation, Duration of Bright Sunshine, Relative Humidity and Vapour Pressure at 11 metres above Ground, Evaporation and Rainfall	17
,,	C4.—Extreme Soil Temperature at Different Depths in Different Fields	18
**	C5.—Surface wind	18

Note: For explanatory notes on tables please refer to Volume 12, Number 1 (January 1969).

GENERAL SUMMARY OF WEATHER CONDITIONS

JULY 1969

Normal Summer weather. Scattered early morning mist over Delta and Cairo areas

GENERAL DESCRIPTION OF WEATHER

The prevailing weather during this month was generally of the mild summer type in north of the Republic and hot in the southern parts. Two weak heat waves were experienced round the periods (6th — 8th) and (10th

—12th) during which weather was hot in north of the Republic and excessively hot in the south.

Apart from local rising sand several days in the Western Desert and Red Sea districts, and early morning mist many days over scattered localities in Delta and Cairo areas, no weather of important significance was experienced.

PRESSURE DISTRIBUTION

The most outstanding features of pressure distribution during this month were :

- The Atlantic anticyclone and its east-ward extension.
- → Local anticyclones moving through Europe.
- Deep low pressure systems through North Europe associated sometimes with secondaries through Central Europe.
- A ridge of high pressure over Central Mediterranean and NE Africa.
- The complex monsoon low pressure system over the Arabian gulf, Arabia and North Sudan.

During this month, the monsoon trough over the Arabian gulf experienced slight deepening and northwestward elongations through Asia Minor four times. These elongations were favoured by the tranist of low pressure troughs or secondary lows through the Black Sea area and its vicinities. As a result of these elongations of the monsoon trough over the Arabian gulf, the barometric pressure over Egypt experienced four corresponding falls round the periods: (3rd — 4h), (7th — 9th), (17th—21st) and (27th —31st).

During the rest periods of the month, high pressure over Central Mediterranean and NE Africa extended slightly eastwards, and consequently the barometric pressure over Egypt showed corresponding rises.

The most important features of pressure distribution over the synoptic upper air charts were:

- Two deep upper lows over North Russia and North Atlantic.
- Secondary upper troughs or lows over the middle latitudes, passing through East Mediterranean on the 3rd, 8th, 19th and 31st.
- Upper high pressure belt over the subtropical latitudes.

SERFACE WIND

The prevailing winds during this month were generally light to moderate and blew from directions between NW, NE. Winds became fresh to strong during several days over few scattered places mainly in the Western Desert and Red Sea districts.

Gale wind was reported at Aswan on the 14th.

TEMPERATURE

Air temperature was rather normal in the northern parts, below normal apart from the second heat wave when it was above normal.

Maximum air temperature values ranged generally between 28° & 33°C in the northern parts, between 30° & 38°C in the middle parts and between 37° & 45°C in the southern

The absolute maximum air temperature was 46.2°C recorded at Aswan on the 13th.

Minimum air temperature oscillated round normal, and its departures from normal were slight in general.

Minimum air temperature values ranged generally between 17° & 24°C in the northern and middle parts and between 24° & 28°C in the southern parts.

The absolute minimum air temperature was 16.0°C recorded at Shebin El Kom & Imbaba on the 1st and at Mallawi on the 16th.

PRECIPITATION

This month was rainless allover the Republic apart from the 13th when drops of rain fell over Balteam.

Chairman (M. F. TAHA) Board of Directors

Cairo, March 1972

SURFACE DATA

Table A 1.—MONTHLY VALUES OF THE ATMOSPHERIC PRESSURE, AIR TEMPERATURE, RELATIVE HUMIDITY, BRIGHT SUNSHINE DURATION & PICHE EVAPORATION

JULY - 1969

		spheric	i			Air T	em peratui	re °C				Rela			ht Sunshi		mm8.
		re (mbs) S.L.	Max	imum	Min	imum		Dry	Bulb	Wet I	Bulb	Humid	lity %	Dura	tion (Hou	rs)	rarion
STATION	Mean	D.F. Normal or Average	(A) Mean	D.F.Normal or Average	(B) Mean	D.F. Normal or Average	$\frac{A+B}{2}$	Меал	D.F. Normal or Average	Меал	D.F. Normal or Average	Mean	D.F. Normal or Average	Total Actual	Total Possible	%	Piche Evaporation Mean
Sallum	1012.2 1012.2 1011.0 1009.5	+1.9 +2.4 +2.5 +2.0 -	30.0 28.4 29.2 29.4	0.9 0.8 0.5 1.0	21.0 20.4 22.5 23.3	-0.3 +0.1 -0.1 -0.8 -	25.5 24.4 25.9 26.4 —	25.1 24.3 25.3 26.0	-1.0 -0.7 -0.7 -0.7 -	20.1 20.9 21.2 22.3	-1.3 -0.6 -1.3 -0.8	61 72 67 72 —	- 3 - 1 - 6 0 -	377.1 364.1 —	432.3 432.3 ———————————————————————————————————	87 77 —	9.0 6.9 7.2 8.2 —
Tanta	1010.7	+2.6	3 1.9	-2.5	19,4	+0.1	25.6	25.1	1.4	20.7	-0.7	66	+ 4	364.4	431.0	84	5.5
Cairo (A)	1010.0	+2.0	32.9	-2.3	20 .5	_1.0	26.7	26.0	_1.9	20.6	_0.7	59	+ 6	_		_	13.9
Fayoum (A) Assyout (A) Luxor (A) Aswan (A)	1008.7 1008.2 1006.5 1006.2	+1.8 +1.4 +1.7 +1.5	35.9 35.2 34.9 39.6 40.8	-0.8 -1.5 -1.9 -0.9 -0.3	20.1 19.0 21.1 22.7 24.7	$ \begin{array}{c c} -1.4 \\ -1.3 \\ -1.2 \\ -0.9 \\ 0 \end{array} $	28.0 27.1 28.0 31.2 32.8	27.7 27.5 28.0 31.3 32.7	-1.2 -1.0 -1.8 -1.5 -0.9	20.5 19.8 19.7 19.9 18.0	-0.3 -0.5 +0.3 0 -0.1	49 45 47 30 17	$\begin{array}{c c} + & 4 & \\ & 0 & \\ +13 & \\ + & 5 & \\ + & 2 & \end{array}$	398.1	425.3	94 	8.9 14.2 18.3 13.1 26.6
Siwa	1011.6 1010.5 1011.2 1009.5 1008.1	+1.9 +2.5 +1.8 +2.7 +1.7	35.6 35.7 35.6 36.8 37.9	-2.3 -1.2 -1.6 -1.7 -1.5	20.6 20.3 19.9 21.8 23.7	-0.1 -0.2 -1.4 -1.1 +0.5	28.1 28.0 27.8 29.3 30.8	28.5 28.1 28.2 29.4 30.8	-1.2 -1.3 -1.6 -1.6 -0.8	18.7 19.2 17.7 17.5 18.1	$ \begin{array}{c c} -0.7 \\ -0.2 \\ +0.1 \\ -0.4 \\ +0.6 \end{array} $	34 38 31 24 28	0 + 2 + 7 + 3 + 2	387.9 — — 386.4	427.7 — — — 418.9	91 — — — 92	16.8 11.8 16.6 22.9 25.1
Tor	1005.6 1005.8	+1.2 +0.9	32.4 31.4	-0.5 -1.8	24.2 25.7		28.3 28.6	28.8 28.9	-0.8 -1.0	21.1 22.1	-0.6 -0.1	 48 53	+ 1 + 5	 - -	<u>-</u>		19.5 18.

TABLE A2 .- MAXIMUM AND MINIMUM AIR TEMPERATURE

JULY - 1969

			M	aximum I	[emper	sture *(,				Min. mp.			Minim	um Tom	persture	•c		
Station	Highest	5 2	180	to.	No.	of Day	s with	Max-Te	mp.	an	From Normal	Highest	Date	110 1	Date	N	o. of D Min.	ays wit Temp.	h.
	High	Date	Lowest	Date	>25	>30	>35	>40	>45	Mean	D. From	High	A	Lowest	Ã	<10	<5	<0	<-5
Sallum	34.4 31.0 31.0 \$2.0	10 7 11 22 —	25.6 27.1 27.8 27.5	15 14 1 16 —	31 31 31 31 —	13 1 3 8 —	0 0 0 0	0 0 0 -	0 0 0 0	20.5 	-	24.9 23.1 24.1 24.5 —	7 9 12 13 —	18.8 17.8 20.0 21.5	2,15 2 25 21 —	0 0 0 -	0 0 0	0 0 0 -	0 0 0
Cante	\$4.8	11,12	28.9	15	\$1	28	0	0	0	_	-	22.0	22	16.8	1	0	0	0	•
lairo (A)	37.3	12	29.8	1	31	29	5	0	0	_	_	22.2	8,10	18.2	2	0	0	0	•
rayoum (A) sayout (A) sayout (A) sayout (A)	39.6 39.6 38.5 45.8 46.2	10,11,12 12 12 12 12 13	32.4 31.8 32.4 36.4 38.0	15 15 14 19 28	31 31 31 31 31	31 31 31 31 31	21 16 13 31 31	0 0 0 9 18	0 0 0 2 1	18 3 17.8 19.4 20.2	11111	22.1 22.0 23.5 26.0 28.0	12 13 22 13	18.0 17.0 18.4 19.8 22.1	15 16 1 22 1	0 0 0 0	0 0 0	0 0 0 0	0
liwa Bahariya Barafia Dakhla Kharga	42.4 40.8 41.1 43.2 44.3	11 8 12 12 12	31.3 32.5 32.4 33.4 34.4	15 14,15 1,15.17 15,16 15	31 31 31 31 31	31 31 31 31 31	17 19 18 23 28	2 2 1 4 4	0 0 0 0	17.0 19.4 19.5 — 22.2	11111	25.8 22.8 22.8 27.5 27.8	8 25 12,26 13 12	17.9 17.5 17.8 16.7 17.8	17 1 4,22 21 21	0 0 0 0	0 0 0 0	0 0 0 0	•
or	34.6 33.4		30.3 30.0		31 31	31 30	0 0	0 0	0 0	22.7	-	27.6 27.2	11 25	22.8 23.4	5 30	0	0	0 0	

		Mean i	Sky Co	ver Oct	•					Rainfe	all mms.					
Station	00	06	12	18	Daily	Total	Normal	Max. in one			Numb	er of Day	e with A	mount of	Rein	
	U.T.	U.T.	U.T.	U.T.	Mean	Amount	D. Гюн	Amount	Date	<0.1	≥0.1	≥1.0	≥5.0	≥10	≥ 25	≥ 50
iallum	0.1 0.9 3.4 —	0.8 2.3 3.0 1.7	0.7 1.1 3.2 0.6	0.1 1.6 2.4	0.5 1.3 2.9 	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0		0 0 0 0	0 0 0 0 	0 0 0 0	0 0 0 0	0 0 0 -	0 0 0 0	0 0 0
Caute	0.6	2.1	1.5	0.1	1.0	0.0	0.0	0.0		0	0	0	0	0	0	0
Dairo (A)	1.3	3.9	0.9	0.5	1.4	0.0	0.0	0.0	-	0	0	0	0	0	0	0
Fayoum (A) Minya (A) Assyout (A) Luxor (A) Asswan (A)	0.0 0.0 0.1 0.3	2.6 1.2 0.5 0.5 0.4	0.7 0.5 0.2 0.6 0.5	0.9 0.4 0.2 0.4 0.4	0.4 0.2 0.3 0.4	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	 	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0
Siwa Bahariya	0.2 0.1 - 0.0 0.0	0.1 0.3 0.0 0.0 0.2	0.8 0.4 0.1 0.0 0.3	0.2 0.4 0.0 0.0 0.4	0.3 0.3 - 0.0 0.2	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0		0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0
Tor	0.2	0.2	0.2 0.4	0.2 0.2	0.2 0.2	 0.0 0.0	- 0.0 0.0	0.0 0.0	<u>-</u>	_ 0 0	_ 0	0		_ 0 0	0	 •

Table A 4. -- DAYS OF OCCURRENCE OF MISCELLANEOUS WEATHER PHENOMENA.

JULY -- 1969

		Precipi	tation			orm	0 metres	8 itres	is tros	y Vis	drising Metres	idstorm Metres		Clear	Cloudy
Station	Rain	Snow	lco. Pellets	Hail	Frost	Thunderstorm	Mist Vis ≥ 1000	Fog Vis <1090 Metres	Haze Vis	Thick Haze Vis	Dust or Sandrising Vis >1000 Metres	Dust or Sandstorm Vis <1000 Metres	Galo	Sky	Sky
Sallum	0	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	0 0 0 0 0	0 0 0 0	0 4 0 0	0 1 0 0 —	0 0 0 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 -	0 0 0 0 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31 22 9 — —	0 0 0 -
Tanta	o	0	0	v	0	0	5	v	0	0	0	0	0	26	•
Cairo (A)	0	0	o	0	0	0	16	2	5	0	0	0	0	23	•
Fayoum (A) Minya (A) Assyout (A) Luxor (A) Aswan (A)	0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 1 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 1	0 0 0 0 1	30 31 27 28	•
Siwa Bahariya Farafra Dakhla Kharga	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 12 9	0 0 0 0	0 0 0 0	31 31 — 31 30	0 0 0
Tor	0 0 0	 0 0	0 0	0	_ 0	0		- 0 0	- 0 0	- 0 0	- 8 0	_ 0 0	0 0	31 30	- •

Table A 5.—NUMBER IN HOURS OF OCCURRENCES OF CONCURRENT SURFACE WIND SPEED AND DIRECTION RECORDED WITH IN SPECIFIED RANGES

JULY -- 1969

	rs)	ours)	hours)]	Numb	er in					es of			wing	from	the
Station	Calm (hours)	Variable (hours)	Unrecorded (hours)	Wind speed in knots	345 / 014	1	0 45 / 074	1	105 / 134	1	1 6 5 / 1 9 4	1	1	1	1	1	All directions
Sallum	2	0	0	1—10 11—27 28—47 ≥48 All speeds	40 20 0 0	135 69 0 0 204	24 6 0 0 30	6 0 0 0 6	9 0 0 9	1 0 0 0	0 0 0 0	1 0 0 0 1	1 0 0 0	10 0 0 0 10	49 31 0 0 80	157 183 0 0 340	433 309 0 0 742
Mersa Matruh	4	0	0	1—10 11—27 28—47 ≥48 All speeds	32 46 0 0 78	2 0 0 0 2	1 0 0 0 1	0 0 0 0	0 0 0 0	1 0 0 0	1 0 0 0	1 0 0 0	13 0 0 0 13	118 0 0 0 118	100 61 0 0 161	137 227 0 0 364	403 334 0 0 740
Alexandria	0	0	26	1.—10 11.—27 28.—47 ≥ 48 All speeds	5 0 0 5	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 0 0 0	4 0 0 0 4	6 0 0 6	6 0 0 6	47 6 0 0 53	218 164 0 0 382	160 101 0 0 261	447 271 0 0 718
Port Said	0	0	22	l—10 11—27 28—47 ≥48 Ali speeds	17 0 0 0 17	3 0 0 0 3	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	12 0 0 0 12	76 4 0 0 80	94 26 0 0 120	105 89 0 0 194	161 135 0 0 296	468 254 0 0 722
Tanta	27	0	0	1—10 11—27 28—47 ≥48 All speeds	8 0 0 0 8	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	107 0 0 0 0	96 0 0 96	161 0 0 0 161	236 3 0 0 239	62 1 0 0 63	713 4 0 0 717
Cairo	68	0	10	11—27 28—47 ≥48	124 106 0 0	41 3 0 0 44	20 0 0 0 20	0 0 0 0	0 0 0 0	1 0 0 0 1	0 0 0 0	0 0 0 0	2 0 0 0 2	36 1 0 0 37	95 4 0 0 99	180 53 0 0 233	499 167 0 0 666
Fayoum	11	0	0	11—27 28—47 >48	350 1 0 0 351	278 28 0 0 0	4 0 0 0 4	1 0 0 0 1	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	11 0 0 0 11	25 0 0 0 25	35 0 0 0 35	704 29 0 0 733
Minya	13	3	0	11 —27 28—47 ≥48	299 313 0 0 612	49 5 0 0 54	1 0 0 0 1	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 0 0 0 1	0 0 0 0	3 0 0 0 3	57 0 0 0 57	410 318 0 0 728

Table A 5 (contd.)—NUMBER IN HOURS OF OCCURRENCES OF CONCURRENT SURFACE WIND SPEED AND DIRECTION RECORDED WITHIN SPECIFIED RANGES

JULY - 1969

	rs)	urs)	tours)		1	Yumt	er in				irrend				wing	from	the
Station	Calm (hours)	Variable (hours)	Unrecorded (hours)	Wind speed in knots	345 / 014	1	1	1	105 / 134	1	1	1	1	25 5 / 284	285 / 314	1	All directions
Asyout	0	0	0	1—10 11—27 28—47 ≥48 All speeds	3 3 0 0 6	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0	1 0 0 0	1 0 0 0	30 0 0 0 30	204 2 0 0 206	241 71 0 0 312	131 57 0 0 188	611 133 0 0 744
Louxor	8	4	8	1—10 11—27 28—47 ≥48 All speeds	12 0 0 0 12	10 0 0 0	5 0 0 0 5	11 0 0 0 11	5 0 0 0 5	59 0 0 0 59	119 0 0 0 119	74 0 0 0 74	88 0 0 0 88	127 1 0 0 128	147 9 0 0 156	57 0 0 0 57	714 10 0 0 724
Aswan	2	2	1	1—10 11—27 28—47 ≥48 All speeds	200 66 0 0 2 66	10 0 0 0 10	1 0 0 0 1	1 0 0 0	1 0 0 0	4 0 0 0 4	17 0 0 0 17	3 0 0 0 3	6 0 0 0 6	28 3 0 0 31	84 37 0 0 121	169 109 0 0 278	524 215 0 0 739
8iwa	4	О	0	1—10 11—27 28—47 ≥48 All speeds	63 19 0 0 82	126 47 0 0	49 8 0 0 57	23 0 0 0 23	5 1 0 0 6	2 0 0 0 2	1 0 0 0 1	5 0 0 0 5	5 0 0 0 5	24 2 0 0 26	11 0 0	199 60 0 0 2 59	592 148 0 0 740
Dakhla	7	0	Ð	1-10 11-27 28-47 ≥48 All speeds	45 34 4 0 83	17 7 0 0 24	8 0 0 0 8	1 0 0 0	2 0 0 0 2	5 0 0 5	5 0 0 5	15 0 0 0 15	46 0 0 0 46	92 0 8 0 100	141 3 10 0 154	162 132 0 0 294	539 176 22 0 737
Kharga	4	0	0	28—47 ≥48	64 182 0 0 246	9 1 0 0 10	5 0 0 0 5	10 0 0 0 10	2 0 0 0 2	1 0 0 0	0 0 0 0	1 0 0 0 1	3 1 0 0 4	19 0 0 0 19	0	172 166 0 0 338	370 370 0 0 740
Hurghada	0	0	2	2847 >48	6 183 20 0 209	14 54 0 0 68	6 0 0 0 6	1 0 0 0 1	1 0 0 0 0	10 0 0 0 10	2 0 0 0 2	1 0 0 1	2 0 0 0 2	7 1 0 0 8	47 54 0 0	31 280 22 0 333	128 572 42 0 742
Quseir	5	0	2	2847 > 48	104 236 0 0 340	60 18 0 0 78	10 0 0 0 10	3 0 0 0 3	2 0 0 0 2	7 0 0 0 7	9 0 0 0 9	5 0 0 0 5	12 0 0 0 12	27 0 0 0 27	50 0 0 0 50	134 60 0 0 194	423 314 0 0 737

UPPER AIR CLIMATOLOGICAL DATA

Table B 1.~MONTHLY MEANS AND MONTHLY ABSOLUTE HIGHER & LOWER VALUES OF ALTITUDE, AIR TEMPERATURE & DEW POINT AT STANDARD AND SELECTED PRESSURE SURFACES

JULY -- 1969

					LL 15						
Station	Pressure Surface	Alt	itude of Pre	mure Surfac	e (gpm)		Tempe	erature (°C)		Dow	Point (°C)
Σ.	Millibar	N	Mean	Highest	Lowest	N	Moan	Highest	Lowest	N	Моал
	Surface	26	1009mb	101 [*] 2mb	1006mb	26	22.9	24.6	20.2	26	19.7
- 1	1000	26	106	132	80	26	22.7	24.9	20.1	26	19.5
- 1	850	26	1511	1 5 5 2	1474	26	17.2	24.1	8.2	26	5.4
į,	700	26	31 55	3223	3105	26	11.8	14.2	7.2	26	-3.0
H (600	26	4430	4501	4377	26	4.8	7.7	$-\frac{1.8}{7.8}$	25 25	-10.4 -18.8
Morse Matrub 0090 U.T.	500 400	25 25	5894	5962	5829	25 25	-4.0 -14.7	0.5 9.4	-19.8	25 25	-28.5
8	300	24	7622 9 746	7692 980 6	7562 9661	23 24	14.7 28.7	-3.4 -25.0	-33.3	22	-40.9
8	250	23	11030	11048	10950	23	_3 7.2	-27.2	-40.6	18	-52.2
4 /	200	21	12513	12602	12408	20	-48.8	-44.5	-50.6	18	-59.5
₹ /	150	18	14371	14447	14213	18	—6 1.8	-57.6	61.4	1	-68.5
Ħ l	100	17	16802	16902	16614	17	—75.8	—72.4	<u>80.0</u>	-	_
2	70	11	18929	18980	18800	11	—70.9	63.3	—74 .5	_	_
5	60	11	19837	20025	19697	11	-65.9	-58.8	-72.0 -65.1		_
7	50	8	20969	2116 7 2°40 6	20878	8 4	-61.4 -55.8	-59.0 -46.1	-6 0.2	_	=
1	4 0 80	3	22338 24199	2 406 24254	22268 24146	3	55.6	-53.9	-58.0		
1	29	i	26761	24204	24140	i	51.5	-	_	_	_
1	10	1~									<u> </u>
	Surface	30	994 mb	996mb	99 0mb	30	21.8	23.6	19.5	30	17.9
1	1000	26	89	112	64	_		·	-	-	-
- 1	850	29	1490	1510	1454	29	19.2	24.7	14.1	27	- 5.0
i	700	29	3138	3182	3088	29	13.0	16.4	9.0	2 5	-14.8
	600	20	4416	4475	4 348	29	5.9	10.0	1.5	25 25	-20.4 -27.2
. 1	500	29	588 5	595 3	5788	29	- 2.8	0.0	- 6.6 -17.4	23	-34.6
5	400	26 25	7619	7668	7513 9640	26 25	-13.3 -27.6	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-31.0	22	-45.7
Holwan 0000 U.T.	3 09 250	23	9749 11039	9806 11105	10944	23	_37.0	-30.7	-40.4	20	-53.2
중 /	200	23	12545	12615	12453	23	_48.3	-45.3	53.7	18	-62.7
ē /	150	17	14377	14457	14260	17	-61.8	-6 0.2	-64.0	_	_
- 5	100	16	16800	16883	16678	16	-75.0	-66.0	—79.0		_
- ē	70	1.4	18864	19020	18700	14	70.9	-68.3	-82.5	_	-
F	60	12	19796	19900	19711	12	64.8	-63.0 -58.5	68.2 63.9	_	
1	50	10	20919	21031	20837 22249	10	-61.0 -57.3	-56.0	-58.4	_	_
1	40	6	22312 24138	22399 24179	24089	6	-53 .0	-50.5	—55.7		i —
1	30 20	2	26760	26801	26718	2	-51.1	-50.6	-51.6	 	-
	10					<u> </u>				<u> </u>	
	Surface	31	984 mb	986mb	982mb	31	27.9	32.0	25.0	31	5.8
- 1	1000	31	51	70	33	-	<u> </u>	-		=	
1	850	2.1	1487	1502	1467	31	25.0	29.8	21.2	31	0.2
ł	700	3.1	3154	3186	3113	31	13.6	18.1	7.2 1.6	31	- 8.6 -14.0
⊢; \	600	31	4432	4472	4378	31	5.1 - 3.4	9.3	- 8.0	31	-22.6
Aswan 0000 U.T.	500	31	5896 7 6 34	5952 7704	58 34 759 5	31	-3.4 -12.6	- 9. 5	-15.3	31	-3 3.0
္က	400 300	30	9770	9859	9713	30	—27.3	-23.2	-30.1	3 0	-44.5
- ŏg	250	29	11058	11153	10996	29	-37.1	—34 2	-40.1	29	-50.7
(200	28	12565	12662	12492	28	-48.6	45.2	50.8	27	-61.7
*	150	26	14401	14521	14307	26	-62.5	-58.9	-6 5.8	1	-69.7
As	100	23	16806	16960	16648	23	-76.8	-72.0	-80.2		_
	70	17	18890	19030	18745	17 12	-70.5 -65.1	- 67.3 61.3	-75.2 -68.8	_	_
Į	60	12	19810 20931	19908 2101 6	19708 20834	12	—62.0	-58.9	-66.4	_	 -
ŀ	50 40	8	2 0931 2 2318	22426	22238	8	5 8.6	-56.9	-62.3	-	_
1	30	8	24159	24241	24088	8	-53.9	-50.7	-56.3	1 -	_
1	20	5	26764	26811	26669	5	48.6	-44.1	-54.0	-	_
,	10	1	31193	-		1	—48.1		<u> </u>		

I - The number of tases the element has been observed during the month.

^{*} The stmospheric pressure corrected to the elevation of the radiosonde stations.

UPPER AIR CLIMATOLOGICAL DATA

Table B1 (contd.)—MONTHLY MEANS AND MONTHLY ABSOLUTE HIGHER & LOWER VALUES OF ALTITUDE, AIR TEMPERATURE & DEW POINT AT STANDARD AND SELECTED PRESSURE SURFACES

JULY - 1969

Climatological upper air data for Mersa Matruh, Helwan & Aswan upper air stations at 1200 U.T. are missing since number of days of release of the radiosonde sets at these stations are less than the permissible number needed for calculating or processing monthly values.

Table B 2.—MEAN AND EXTREME VALUES OF THE FREEZING LEVEL AND THE TROPOPAUSE; THE HIGHEST WIND SPEED IN THE UPPER AIR

JULY - 1969

					Free	zing Le	vel							First	Тгоро	pause				Highe	st wi	ind sp	bood
			Mean		I	Highest			Lowest			Mean		:	Highest			Lowest		(md3)	(mb.))° (C	Knots
	Station	Altitude (gpm)	Pressure (mb.)	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Dew point (°C)	Altitnde (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gr	Pressure (n	Direction (000—360)°	Speed in K
		(N)	(N)	(N)							(N)	(N)	(N)										
1	Merse Matruh(A)	5314 (25)	540 (25)	-15.1 (25)	5870	503	15 .5	4700	578	_ 8.8	1698 6 (15)	97 (15)	— 76.2 (15)	18090	81	—73.0	15560	120	-72.9	1 305 5	_	252	105
0000 UT	Helwan	5402 (29)	531 (29)	-2 6 .0 (25)	5898	500	20.2	4530	591	_19.2	16 6 98 (14)	102 (14)	-74.9 (14)	18000	82	—79.3	14930	138	-64.3	14500	144	240	110
	Aswan A)	528 4 (31)	540 (31)	-18.1 (31)	59 40	499	—23.4	4640	583	-12.5	16913 (17)	99 (17)	-77.3 (17)	18510	76	80.0	15980	115	75.4	32950	09	100	85

N = The number of cases the element has been observed during the month.

TABLE B 3.— NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES

MERSA MATRUH (A) — JULY 1969

					Wii	nd between	n ranges o	f direction	(000-360)) *				calm	r of	pu (
Time	Pressure Surface Millibar	345 / 014	015 / 044	045	075 / 104	105	135 / 164	165 / 194	195 / 224	225 / 254	255 / 284	285 / 314	315 / 344	of sp	numbe	scalar wir
		N (ff)	N	N (ff) 1	N (ff)	N (ff)	N (ff)	N (if)	N (fi)	N (ff)	N (ff)	N (ff)	N (ff)	Number	Total	Mean
0000 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 100	1 10 2 12 13 18 6 2 5 18 1 10 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0	1 7 0 -11 2 11 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 0 0 0 1 15 0 1 33 3 35 0 1 23 0 0 0	0	1 8 0 — 0 — 1 11 14 3 17 6 38 12 47 10 42 9 45 6 45 3 27 0 — 0 — 0 — 0 — 0 — — — — — — — — — —	9 8 1 12 1 33 0 — 6 18 13 23 11 30 6 40 6 45 3 39 2 28 4 25 0 — 0 — 0 —	3 9 11 13 2 17 12 19 9 17 4 18 3 30 3 29 2 32 0 — 1 15 0 — 0 — 0 — 0 — — 0 —	12 15 8 16 5 12 4 12 4 22 3 26 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26 26 26 26 25 25 24 22 19 18 15 9 6 6	9 14 17 18 17 20 31 41 40 42 41 28 18 23 30 36 44

N = The number of cases the element has been observed during the month.

TN = The total number of cases the wind has been obsered for all directions during the month.

TABLE B 3 (mntd.)—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES.

HELWAN — JULY 1969

									Wi	nd b	etwee	n ran	ges o	f dire	ction	(000)	360)•								Calm	er of	wind
TIES .	Pressure Surface (Millibar.)	34	15 / 4		15 44	04 07	/	07	1	10	'	13 / 16		16	·]	19	<i>'</i>)		2 5 / 5 4	}	55 84		85 / 14		15 / 14	of side	Numb ations	Scalar
		N	(ff)	N	(ff) m	N	(ff) m	N	(ff) m	N	(ff) m	N	(ff) m	N	(ff) m	N	(ff) m	N	(ff) m	N	(if) m	N	(ff) m	N	m.	Number wir	Total Observ	Mean
(Surface	16	6	1 —	12	2	3	0	_	0	_	0	_	0	_	0	_	0	_	0		1	3	10	5 —	0	3 0	-
	850	9 2 4	20 16 10	3 0 0	18 —	1 - 0	25 —	0	6 - -	1 - 1	8	0	_	0 2 1	10 23	0 2 5	- 11 16	0 5 5 5	11 18 29	5 4 4	16 22 28	3 6 6	14 10 11	8 3	20 15 8 12	0 0	29 29 29 27	
	500	0 0 1 2	- 11 26	1 0 0	25 5 —	$\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$	5 16	0 0 0	_ _ _ 14	2 0 0	6 — —	$egin{bmatrix} 0 \\ 2 \\ 1 \\ 2 \end{bmatrix}$	34 46 28	2 3 5	39 32 29 28	8 2 3 2	24 20 34 48	8 12 8	26 34 47	4 5 2 1	24 28 46 81	2 3 0 1	18 32 - 18	3 2 1 0	13	0 0	25 24 22	
	200	0 1 0	47	0 0	5	0	_	1 0 0	14	1 2	24 20 45	1 1 2	38 38 48	5 4 1	33 38 10	1 1 0	4 42	6 3 1	50 68 42	0 0		0 0	=	1 1	40 8 43	0 0	17 13 6	4
	70	0	-	0	_	0	40	1 3	4 l 34	0	54	0		0	_	0	_	0	=	0	_	0		0		0 0	3	3
	40	_	=	<u>-</u>	=	-				_		_	-						-		_ 		=		_	_		-
(10	[_	_		_			_	_	_	_	_	_	=	_			_		-	_		_		-	_		-

N - The number of cases the element has been observed during the month.

Thetotal number of cases the wind has been observed for all directions during the month.

TABLE B 3 (contd.)—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES.

ASWAN (A) — JULY 1969

									W	in t b	ctwee	n ya	nges o	f dire	otion	(000	- 360)•			-					m la	r of (T N)	rind ts)
, a	Pressure Surface (Millibar)		45 / 14	0	15 / 14	0	45 / 74		75 / 04		05 / 34	ĺ	35 / 64		65 / 94		95 / 24	29 20	/	1	55 / 84	28 / 31	'		15 / 44	er of co	number	Soalar ed (Kao
		N	(ff)	N	(ff)	N	(ff)	N	(ff)	N	(ff)	N	(ff) m	N	(ff) m	N	(ff)	N	(ff)	N	(if) m	N	(ff)	N	(ff) m	Number	Total	Mean Spe
00 00 U.T.	Surface	7 2 0 1 1 0 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	9 	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 10	0 1 1 1 1 4 6 2 2 1 0 0 0 0 2 2 0 0 1 0 0		0 0 0 0 5 3 6 6 2 2 4 7 8 6 5 7 1 1		0 1 2 0 5 4 5 8 11 13 15 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 5 10 - 11 8 10 19 23 33 45 33 28 - - -	0 0 3 1 2 3 2 1 3 3 0 0 0 0 0	18 23 	0 2 5 2 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	21 10 14 	1 5 7 2 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 11 16 15 7 5 8 ————————————————————————————————	0 -337886001 000000000000000000000000000000000		0 6 5 3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 16 8 15 — 18 — — — — — — — — — — — — — — — — —	7 5 2 2 2 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0	9 	12 6 1 0 1 3 1 2 0 0 0 0 0 0 0 0	10 12 7 5 12 5 4		31 	9 -11 15 14 11 12 13 16 21 30 43 30 33 39 47 56 65

N = The number of cases the element has been observed during the month.

TN - The total number of cases the wind has been observed for all directions during the month.

REVIEW OF AGRO-METEOROLOGICAL STATIONS

EL KASR - JULY 1969

This month was slightly cooler than last July. The daily maximum air temperatures were slightly round normal. The highest maximum air temperature for the month (29.6°C) was reported on the 7th.

The extreme maximum soil temperatures were lower than the corresponding values of last July at all depths between 2,100 cm. and the differences ranged between 2.3°C at 2 cm. and 0.9°C at 100 cm. The extreme maximum soil temperature were also lower than the corresponding values of last July at all depths and the differences ranged between 1.3°C at 20 cm. and 0.2°C at 100 cm.

The daily mean pan evaporation was 1.17 mm. less than the corresponding value of July 1968. The daily mean actual duration of bright sunshine was 0.1 hour more than July 1968.

TAHRIR - JULY 1969

This month was cooler than last July. The daily maximum air temperatures were below average most of the month. Three light heat waves occurred on the 8th, during the periods (10th—12th) and (21st—23rd) respectively. The highest maximum air temperature for the month (35.7°C) was reported on the 8th.

The extreme maximum soil temperatures were lower than the corresponding values of last July at all depths between 2,100 cm. and the differences ranged between 3.1°C at 2 cm. and 1.5°C at 100 cm. The extreme minimum soil temperatures were also lower than the corresponding values of last July at all depths; the differences ranged between 0.5°C at 2 cm. and 1.6°C at 20 cm.

The daily mean pan evaporation was 0.08 mm. more than the corresponding value of July 1968. The daily mean actual duration of bright sunshine was 0.3 hour more than July 1968.

BAHTIM - JULY 1969

This month was cooler than last July. The daily maximum air temperatures were below average most of the month. A light heat wave occurred during the period (10th—12th) yielding the highest maximum air temperature for the month, (36.7°C) on the 12th.

The extreme maximum soil temperatures were lower than the corresponding values of last July at depths between 2,50cm. and the differences ranged between 2.9°C at 5cm. and 0.6°C at 50cm. At 100cm. depth the extreme maximum soil temperature was slightly higher (0.2°C) than last July. The extreme minimum soil temperatures were also lower than last July at depths between 2,50 cm. and the differences ranged between 1.5°C at 5 cm. and 0.4°C at 50 cm. At 100 cm. depth the extreme minimum soil temperature was 0.4°C higher than last July.

The daily mean pan evaporation was 1.09 mm, less than the corresponding value of July 1968. The daily mean actual duration of bright sunshine was .1 hour more than July 1968.

KHARGA - JULY 1969

This month was cooler than last July. The daily maximum air temperatures were below normal most of the month. Two heat waves occurred on the 8th and during the period (11th-13th) respectively. The second heat wave yielded the highest maximum air temperature for the month (44.3°C) on the 12th.

The extreme maximum soil temperatures were lower than the corresponding values of last July at all depths between 2,100 cm. and the differences ranged between 2.6°C at 5 cm. and 0.6°C at 100cm. The extreme minimum soil temperatures were also lower than the corresponding values of last July at all depths, and the differences ranged between 1.2°C at 2 cm. and 0.1°C at 100 cm.

The daily mean pan evaporation was 1.21 mm, more than the corresponding value of July 1968. The daily mean actual duration of bright sunshine was 0.7 hour more than July 1968.

Table C 1.—AIR TEMPERATURE AT 1½ METRES ABOVE GROUND JULY — 1969

		Air To	mperan	ire (°C)				Mean I				aily air g values	-	ature		
STATION	Mean Max.	Mean Min.	Mean of the day	Night time mean	Day time mean	-5°C	0°C	5°C	10°C	15°C	20°C	25°C	30°C	35°C	40°C	45°0
El Kasr	28.3	19.9	24.8	2 2.6	2 6.4	24.0	24.0	24.0	24.0	24.0	23.1	10.9	0.0	0.0	0.0	0.0
Tahrir	32.8	19.7	25.5	23 8	28.1	24.0	24.0	24.0	24.0	24.0	22.4	11.8	4.6	0.0	0.0	0.0
Bahtim	3 2.7	18.0	24.8	21.0	27.9	24.0	24.0	24.0	24.0	24.0	19.5	11.2	4.6	0.1	0.0	0.0
Kharga	37.9	23.7	31.0	28.2	33.5	24.0	24.0	24.0	24.0	24.0	23.9	21.7	13.1	5.4	0.7	0.0
İ														ļ		

Table C 2.— EXTREME VALUES OF AIR TEMPERATURE AT $1\frac{1}{2}$ METRES ABOVE GROUND, ABSOLUTE MINIMUM AIR TEMPERATURE AT $5c_{ms}$ ABOVE GROUND OVER DIFFERENT FIELDS.

JULY - 1969

Max. I	Temp. at	l½ metre	s (°C)	Min.	Temp. at	1½ metre	s (°C)	Min. T	emp. at	oms. ah	o ▼• (*C)
Hig	hest	Lo	wost	High	hest	Lov	vest	Dry	soil .	Gr	Add
Value	Date	Value	Date	Value	Date	Value	Date	Value	Date	Value	Date
29.6	7	27.0	15	22.6	9	16.4	2.6	13.1	6	_	_
35.7	8	29.3	15	22.5	22	16,6	1	14.8	1	-	-
3 6. 7	12	29.2	15	21.1	10	15.3	1	12.2	1	_	_
44.3	12	34.4	15	27.8	12	17.8	21	16.0	21	-	_
	Palue 29.6 35.7 36.7	Highest Value Date 29.6 7 35.7 8 36.7 12	Highest Lo Value Date Value 29.6 7 27.0 35.7 8 29.3 36.7 12 29.2	Value Date Value Date 29.6 7 27.0 15 35.7 8 29.3 15 36.7 12 29.2 15	Highest Lowest High Value Date Value 29.6 7 27.0 15 22.6 35.7 8 29.3 15 22.5 36.7 12 29.2 15 21.1	Highest Lowest Highest Value Date Value Date 29.6 7 27.0 15 22.6 9 35.7 8 29.3 15 22.5 22 36.7 12 29.2 15 21.1 10	Highest Lowest Highest Lowest Value Date Value Date Value 29.6 7 27.0 15 22.6 9 16.4 35.7 8 29.3 15 22.5 22 16.6 36.7 12 29.2 15 21.1 10 15.3	Highest Lowest Highest Lowest Value Date Value Date Value Date Value Date 29.6 7 27.0 15 22.6 9 16.4 2.6 35.7 8 29.3 15 22.5 22 16.6 1 36.7 12 29.2 15 21.1 10 15.3 1	Highest Lowest Highest Lowest Dry Value Date Date Date Date Date Date Date <t< td=""><td>Highest Lowest Highest Lowest Dry soil Value Date Value Date Value Date Value Date 29.6 7 27.0 15 22.6 9 16.4 2.6 13.1 6 35.7 8 29.3 15 22.5 22 16.6 1 14.8 1 36.7 12 29.2 15 21.1 10 15.3 1 12.2 1</td><td>Highest Lowest Highest Lowest Dry soil Great Value Date Date<!--</td--></td></t<>	Highest Lowest Highest Lowest Dry soil Value Date Value Date Value Date Value Date 29.6 7 27.0 15 22.6 9 16.4 2.6 13.1 6 35.7 8 29.3 15 22.5 22 16.6 1 14.8 1 36.7 12 29.2 15 21.1 10 15.3 1 12.2 1	Highest Lowest Highest Lowest Dry soil Great Value Date Date </td

Table C3 —(SOLAR+SKY) RADIATION, DURATION OF BRIGHT SUNSHINE, RELATIVE HUMIDITY, VAPOUR PRESSURE AT $1\frac{1}{2}$ METRES ABOVE GROUND, EVAPORATION & RAINFALL.

JULY - 1969

N.	ry) Radia- cal/cm ⁸	Duratio Sunshi	on of Ba	right 1 18)	Rela	tive]	Humi	dity. %		Vapo	ur pres	sure (m	ms)			apora- (mms)	Ran	nfall (r	nme)
STATION	(Solar+Sky) I tion gm. cal/	Total Actual monthly	Total Possible monthly	%	Mean of day	1200 U.T.	Lower	Date	Mean of day	1200 UT	Highest	Date	Lowest	Date	Piohe	Pan class (A)	Total Amount Monthly	Max. Fall in one day	Date
El Kasr Tahrir Bahtim Kharga	713.2 710.2	390.1 359.5	43 0.9 429 .9	90 84	67 70	67 42 44 20	33 25 28	7 8 8	17.6 15.8 15.8	18.7 14.6 15.4 8.9	22.6 19.9 20.0		10.1 10.1 11.6 5.1	8 20 1 21	8.4 8.2 8.4 25.4	10.85 9.59	0.0	0.0 0.0	-
								1											

Table C 4.—EXTREME SOIL TEMPERATURE AT DIFFERENT DEPTHS (cms)
IN DIFFERENT FIELDS

JULY --- 1969

STATION	et (H)	E			-	ature (epths		dry fi	eld	Ех		soil te at diffe	•			rass fi	•ld
	Highest Lowest	2	5	10	20	50	100	200	300	2	5	10	20	50	100	200	800
El Kasr	H L	42.3 25.7	38 3 24.2			28.2 27.3		24. 3 23.3	_	<u>-</u>	_	<u>-</u>	_		_		=
Tahrir	H L		47.7 26.4		36.4 29.1	32.0 30.4		28.5 27.7	27.5 26.5	_	_	_	_	_	=	_	_
Bahtim	H L	52.9 28.7	44.8 27.9			31.6 30 3	30.0 28.8		24.9 24.1	_	_	=	_	_	_	_	_
Kharga	H L	56.8 21.8		43.7 30.1		35.0 33.6	32.8 32.2	30 5 2 9 .5	29.0 28.0	 -	-	=	_	_	_	_	_

Table C 5. - SURFACE WIND

JULY - 1969

	Wind	d Speed m	1/500 res		Days wi	ith surface	e wind spo	eed at 10	metres		Max, Gust at 10	et (knots) metres
STATION	Mean of the day	Night time mean	Day time mean	≥10 knots	≥15 konts	≥20 knots	≥25 knots	≥ 30 knots	≥35 knots	≥40 knots	value	Date
El Kasr	3.9	3.1	4.8	_						_	_	_
Tehrir	2.7	1.8	3.6	31	19	1	_		_	_	25	7,15
Bahtim	_	_	_	21	7	_	_			_	23	5,13
Kharga	4.6	3.6	5.6	31	27	19	7	2	-		36	14

PRINTED IN ARAB REPUBLIC OF EGYPT
BY THE GENERAL ORGANIZATION
FOR GOVT. PRINTING OFFICES. CAIRO
First Under-Secretary of State
ALY SULTAN ALY
Chairman of the Board of Directors

MONTHLY WEATHER REPORT

VOLUME 12

NUMBER 8

AUGUST, 1969

ATMOSPHERIC SCIENCES LIBRARY

APK 1 7 1972

N.O.A.A. U. S. Dept. of Commerce

U.D.C. 551. 506.1 (62)

PUBLICATIONS OF THE METEOROLOGICAL AUTHORITY OF THE ARAB REPUBLIC OF EGYPT — CAIRO

In fulfilment of its duties, the Meteorological Authority of Egypt issues serveral reports and publications on weather, climate and agrometeorology. The principal publications are described on this page.

Orders for publications should be addressed to:

"Chairman of the Board of Directors, Meteorological Authority, Kubri-el-Qubbeh - CAIRO".

THE DAILY WEATHER REPORT

This report is issued daily by the Meteorological Authority since the year 1901. It includes surface and upper air observations carried out by the relevant networks of the Republic at the principal hours of observations.

As from January 1968, this report was revised to include a condensed representative selection of surface and upper air observations besides the 1200 U.T. surface & 500 mb charts.

THE MONTHLY WEATHER REPORT

First issued in 1909, the Monthly Weather Report served to give a brief summary of the weather conditions that prevailed over Egypt during the month, with a table showing the mean values for few meteorological elements and their deviations from the normal values. From 1954 to 1957 this report was in a rapid state of development and extension resulting into a voluminous report on January 1958 giving surface, upper air, and agro-meteorological data for Egypt.

As from January 1964, the Monthly Weather Report was pressed to give climatological data for a representative selection of synoptic stations.

THE AGRO-METEOROLOGICAL ABRIDGED MONTHLY REPORT

Gives a review of weather experienced in the agro-meteorological stations of Egypt as well as monthly values of certain elements.

THE ANNUAL REPORT

This report gives annual values and statistics for the various meteorological elements, together with a summary of the weather conditions that prevailed during all months of the year.

CLIMATOLOGICAL NORMALS FOR EGYPT

A voluminous edition was issued in march 1968 which brings normals and mean values up till 1960.

METEOROLOGICAL RESEARCH BULLETIN

First issued in January 1969 on a bi-annual basis. It includes research works carried out by members of staff of "The Meteorological Institute for Research and Training" and the Operational Divisions of Meteorological Authority.

TECHNICAL NOTES

As from October 1970, the Meteorological Authority started to issue a new series of publications in the form of Technical Notes (non periodical) on subjects related to studies and applications of meteorology in different fields for the benefit of personnel working in these fields.

The first Technical Note I was issued in October 1970 on : Sandstorms & Duststorms in Egypt.

MONTHLY WEATHER REPORT

VOLUME 12 NUMBER 8

AUGUST, 1969

U.D.C. 551, 506.1 (62)

THE EGYPTIAN METEOROLOGICAL AUTHORITY
CAIRO

NOTICE

As from 25th November 1971 the name of the (Meteorological Department) has been changed to be the (Meteorological Authority).

CONTENTS

	General Summary of Weather Conditions	PAGE
	SURFACE DATA	
Tabl	le A1.—Monthly values of the Atmospheric Pressure, Air Temperature. Relative Humidity, Bright Sunshine, Duration and Piche Evaporation	3
,,	A2Maximum and Minimum Air Temperatures	4
"	A3. Sky Cover and Rainfall	5
,,	A4Number of Days of Occurrence of Miscellaneous Weather Phenomena	6
,,	A5.—Number in Hours of Occurrences of Concurrent Surface Wind Speed and Direction Recorded Within Specified Ranges	7,8
	UPPER AIR DATA	
Fable	B1.—Monthly Means and Monthly Absolute Higher & Lower Values of Altitude, air Temperature & Dew point at Standard and Selected Pressure Surface	9,10
**	B2.—Mean and Extreme values of The Freezing Level and The Tropopause; The Highest Wind Speed in The Upper Air	11
••	B3.—Number of Occurrences of Wind Direction within Specified Ranges and The Mean Scalar Wind Speed at the Standard and Selected Pressure Surfaces	12–14
	AGRO-METEOROLOGICAL DATA	
	Reviews of Agro-meteorological Stations	15–16
a ble	C1.—Air Temperature at 2 metres above Gorund	17
,,	C2.— Absolute Values of Air Temperature at 2 metres above Ground, Absolute Minimum Air Temperature at 5 cms above Ground over Different Fields	17
,,	C3. (Solar + Sky) Radiation, Duration of Bright Sunshine, Relative Humidity and Vapour Pressure at 2 metres above Ground, Evaporation and Rainfall	17
**	C4.—Extreme Soil Temperature at Different Depths in Different Fields	18
**	C5.—Surface wind	18

Note: For explanatory notes on the tables please refer to Volume 10, Number 1 (January 1967).

GENERAL SUMMARY OF WEATHER CONDITIONS

AUGUST 1969

Normal summer Weather. An excessive heat wave in the southern parts from the 26th till the 31st. Frequent early morning mist over Delta and Cairo areas.

GENERAL DESCRIPTION OF WEAHER

The prevailing weather during this month was generally of the mild summer type in the northern parts, normal summer weather in the central parts and excessively hot in the southern parts. Three variant heat waves were experienced round the 4th, (15th-20th) and (26th-31st) respectively. The first heat wave was pronounced in the central parts and the third heat wave was remarkably excessive in the southern parts, otherwise the waves were of weak intensity. The break down of these heat waves was followed by periods of mild summer weather particularly during the second week of the month.

The important weather phenomena experienced during this month were the frequent formation of scattered rising sand during several days over the Western Desert and Red Sea.

PRESSURE DISTRIBUTION

The most outstanding features of pressure distribution over the synoptic surface charts during this month were:

- The Atlantic anticyclone and its eastward extension.
- Local anticyclones moving through Europe.
- Deep depressions through North Europe, associated sometimes with secondaries through Central Europe.

- A ridge over Central Mediterranean and NE Africa.
- The complex monsoon low pressure system over the Arabian gulf, Arabia and North Sudan.

The monsoon trough over the Arabian gulf showed slight deepening and elongation through East Mediterranean area six times during this month. These elongations associated the transit of secondary lows or troughs through the Black Sea area and its vicinities. As a result of these elongations, the barometric pressure over Egypt experienced six corresponding falls round the periods (3rd - 4th), (5th - 6th), (8th - 10th), (13th - 15th), (21th - 23rd) and (25th - 27th) respectively.

During the rest periods of the month, high pressure built over Central Mediterranean and NE Africa and accordingly the barometric pressure over Egypt was above normal.

The most important features of pressure distribution over the synoptic upper air charts were:

- Deep upper low pressure systems over North Russia and North Atlantic.
- Secondary upper lows or troughs over the middle latitudes, traversing East Mediterranean on the 7th, 17th and 22nd.
- Upper high pressure belt over the subtropical latitudes.

SURFACE WIND

Light to moderate NE to NW winds prevailed most days of this month in general. Winds became tresh to strong during many days of the month over scattered places in the Western Desert and Red Sea districts.

TEMPERATURE

Maximum air temperature was above normal during the heat waves, and the deviations from normal were slight to moderate in general. As an exception, the deviation above normal was rather appreciable in the central parts during the first heat wave and in the southern parts during the third heat wave. Dering the mild periods, maximum air temperature slowed slight to moderate deriations below normal in general.

Maximum air temperature values ranged generally between 28° & 32°C in the northern parts, between 32° & 37°C in the middle parts and between 39° & 45°C in the southern parts.

The absolute maximum air temperature was 46.6°C recorded at Luxor on the 27th.

Minimum air temperature oscillated round normal and the deviation was slight to moderate, except during the last heat wave when the deviation above normal was rather appreciable in the southern parts.

Minimum air temperature values ranged generally between 17° & 24°C in the northern and middle parts and between 22° & 27°C in the southern parts.

The absolute minimum air temperature was 15.7°C recorded at Shebin El Kom on the 17th.

PRECIPITATION

This m nth was rainless all over the Republic, apart from 0.5 mm over Luxor on the 30th which is a record for rainfall over Luxor during August.

chairman (M.F. TAHA.)

Board of Directors

Cairo, Incomber 1971

Table A 1.— MONTHLY VALUES OF THE ATMOSPHERIC PRESSURE, AIR TEMPERATURE, RELATIVE HUMIDITY, BRIGHT SUNSHINE DURATION & PICHE EVAPORATION AUGUST 1969

	1	spheric				Air I	l'emperatu	re °C				Rela	ative	Brio	ht Sunsh:	ine	nme.
	I .	re (mbs) S.L.	Max	imum	Min	mum		Dry	Bulb	Wet	Bulb	Humic	lity %		ation (Ho		tion (r
Station	Mean	D.F. Normal or Average	(A) Mean	D.F.Normal or Average	(B) Mean	D.F.Normal or Average	A+B 2	Mean	D.F.Normal or Average	Mean	D.F.Normal or Average	Mean	D.F.Normal or Average	Total Actual	Total Possible	%	Piche Evaporation (mms.)
Sallum	1009.8 1011.1 1010.3 1008.9	-0.5 +1.0 +1.5 +0.9	29.9 29.1 29.4 29.6	$ \begin{array}{c} -1.1 \\ -0.8 \\ -1.2 \\ -1.2 \end{array} $	21.5 20.0 22.2 23.6	-0.1 -1.0 -0.6 -1.3	25.7 24.6 25.8 26.6	25.5 24.5 25.5 26.2	-0.8 -1.0 -1.2 -1.1	21.1 21.2 21.5 22.7	+0.8 -0.6 -1.5 -1.0	66 73 69 73	$ \begin{array}{c} 0.0 \\ +1 \\ -3 \\ +1 \\ - \end{array} $	365.2	411.1	88.8	8. 6. 7.
Canta	1009.9	+2.1	33.0	-1.6	19.8	+0.3	26.4	25.6	-1.3	21.4	-0.6	67	-3	356.8	410.6	86.9	4.
Cairo, (A)	1009.3	+0.8	33.8	-0.9	21.0	0.8	27.4	26.6	1.1	21.3	-0.8	61	+5	-	-		13.
Fayoum (A) Assyout	1008.0 1007.5 1005.8 1005.5	$ \begin{array}{c} -0.6 \\ +0.5 \\ +0.7 \\ +0.4 \end{array} $	36.9 36.1 35.8 41.2 42.0	$ \begin{array}{c} +0.4 \\ -0.3 \\ -1.1 \\ +0.2 \\ +0.7 \end{array} $	20.6 20.1 21.2 23.6 24.8	-1.0 0.4 -1.2 0.0 -0.4	28.8 29.1 28.5 32.4 33.4	28.2 27.7 28.4 32.5 33.6	-0.8 -0.6 -2.0 -0.4 -0.2	21.3 20.7 20.0 20.5 18.7	$\begin{array}{c} 0.0 \\ -0.1 \\ +0.2 \\ +0.5 \\ +0.3 \end{array}$	52 51 43 29 18	$ \begin{array}{c c} +4 \\ +1 \\ +8 \\ +3 \\ +2 \end{array} $	366.4	406.6	90.1 — — —	8.1 12 16 13 30
iiwa. Bahariya	1010.4 1009.2 1010.0 1008.8 1007.3	+0.6 +1.0 +0.6 +1.1 +0.7	36.8 36.9 37.0 38.0 39.3	$ \begin{array}{c} -0.9 \\ +0.1 \\ -0.5 \\ -0.8 \\ 0.0 \end{array} $	20.7 21.3 20.5 21.2 22.7	$\begin{array}{c} 0.0 \\ +0.5 \\ -0.6 \\ -1.6 \\ -0.2 \end{array}$	28.8 29.1 28.8 29.6 31.0	29.0 29.3 29.0 29.9 31.7	-0.8 -0.3 -0.9 -0.9 -0.2	19.1 19.7 17.7 18.1 18.2	-0.6 -0.1 -0.2 -0.2 -0.9	35 36 27 26 25	1 0.0 2 +3 1	377.3 — — — (338.1)	_	90.2	14.9 11.2 16.2 23.0 24.7
Cor	1005.2 1005.2	+0.7 +0.2	33.8 32.4	+0.6 -1.3	25.4 26.4	+0.2 -0.5	29.6 29.4	29.8 29.7	- +0.3 -0.6	22.4 22.4	- 0.0 0.0	- 50 51	+2 +4	_	-		17.6 18.7

Note.—The number of records for the sunshine at Kharga was 28 days only.

Table A 2. -MAXIMUM AND MINIMUM AIR TEMPERATURE
AUGUST 1969

			Ma	ximum Te	mperat	ure °C				Grass Tem				Minimun	1 Temper	ature °C	;		
Station	Highest	Date	Lowest	Date	Ne	o. of De	ays with	ı Max-T	emp,	Mean	m Normal	Highest	Date	Lowest	Date	N N		ays wi Temp.	th
	H	Q Q	Ŷ.	q	>25	>3 0	>35	>40	>45		Dev. From	, 30°	Q -	Го	 	<10	< 5	<0	<-5
Sallum	33.6 32.8 31.5 31.0	18 3 18 14 —	27.5 28.0 27.8 28.5	31 1 9 23	31 31 31 31 —	13 4 7 7	0 0 0	0 0 0	0 0 0 0 -	21.1 21.2 23.2		23.3 23.6 24.7 25.0	19 21 20 29	19.1 16.0 18.7 21.5	9 27 18 10 —	0 0 0 0	0 0 0 0 -	0 0 0 0 -	0 0 0 0 -
Tanta	35.7	28	30.4)	31	31	2	0	0		_	21.8	15	17.5	10	0	0	0	0
Cairo(A)	40.0	4	31.2	10	31	31	6	0	U	-	-	23.2	4	19.2	17	0	0	0	0
Fayoum (A) Minya (A) Assyout (A) Luxor (A) Asswan (A)	40.7 41.3 41.0 46.6 46.0	4 4 29 27 31	34.2 32.8 32.0 37.5 38.4	10,11 10 11 10 11	31 31 31 31 31	31 31 31 31 31	28 24 19 31 31	1 2 16 26	0 0 0 4 6	19.4 18.2 19.6 21.0		22.6 22.2 23.7 26.4 29.8	29 52,9 4 27 29	18.7 17.9 19.2 21.2 21.7	11 11 11 11 12	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
Siwa	40.8 40.9 42.0 42.2 43.7	19 3 3 4 4	33.8 34.4 34.1 34.4 36.0	9 10 11 10 10,11,12	31 31 31 31 31	31 31 31 31 31	27 27 25 29 31	3 1 2 5 11	0 0 0 0	17.1 19.7 20.0 — 20.8		23.9 25.0 24.5 27.7 27.6	3 4 4 30 5	17.5 19.1 18.6 16.4 18.4	26 14 18 18 11	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0
Tor	37.3 35.4	26 4	31.4 30.6	1,12 11	31 31	31 31	8 1	0 0	0	23.7		28.7 28.6	28 5	22.5 24.7	12	0 0	0 0	0	0 0

		Mean	Sky Cov	er Oct.					Rainf	all mms.						
Station	00	06	12	18	Daily	Total	D. From	1	x. Fall one day	ı	lumber	of Day	s with	Amount	of Rai	n,
	U.T.	U.T.	U.T.	U.T.	Mean	Amount	Normal	Amount	Date	<0 1	≥0 1	≥1 0	≥5 0	≥10	≥ 25	≥50
form Matruh (A) Mexandria . (A) Port Said . (A) El Arich Shasza	0.9 0.9 2.7 —	0.8 2.0 2.b 2.3	0.1 1.1 2.2 0.7	0.2 1.2 2.2	0.5 1.3 2.3 —	0 0 0 0 	0.0 0.0 -0.5 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	= = = = = = = = = = = = = = = = = = = =	0 0 0 0 -	0 0 0 0 -	0 0 0 0 -	0 0 0 0 -	0 0 0 0 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 -
Panta	0.5	1.7	0.5	0.0	0.7	0	0.0	0		0	0	0	0	0	0	0
Cairo (A)	2.5	3.7	0.3	0.2	1.5	0	0.0	0		0	0	0	0	o	0	0
Fayoum (A) Minya (A) Assyout (A) Luxor (A) Aswan (A)	0.0 0.0 0.5	1.6 1.2 0.3 0.6 1.0	6.3 0.2 0.2 0.7 0.9	0.3 0.1 0.3 0.7 0.9	0.3 0.2 0.6 0.9	0 0 tr 0.5 0.0	0.0 0.0 +tr. +0.5 0.0	0 0 tr. 0.5 0.0	30 30 —	0 0 1 0 0	0 0 0 0 1 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0
Siwa	0.0	0.2 0.5 0.0 0.3	0.0 0.2 0.0 0.3 0.5	0.0 0.1 0.0 0.2 0.3	0.3 0.2 	0 0 0 0	0.0 0.0 0.0 0.0 0.0	0 0 0 0		0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0
Tor	0.0	0.3 0.5	0.3 0.4	0.1	0.2	- 6 0	0.0 0.0	0		0 0	0 0	0 0	0 0	0 0	0 0	000

Table A 4. - DAYS OF OCCURRENCE OF MISCELLANEOUS WEATHER PHENOMENA

AUGUST 1969

Station	Rain	Prec Snow	lce. Pellets	Hail	Fiest	Thunderstorm	Mist Vis > 1000 metres	Fog Vis < 1000 Metres	Haze Vis	Thick Haze Vis	Dust or Sandrising Vis ≥ 1000 Metres	Dust or Sandstorm Vis < 1000 Metres	Gale	Clear Sky	Cloudy Sky
Sallum	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0	0 1 1 0 -	0 1 1 0 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 -	30 23 14 — —	0 0 0 -
Tanta	0	0	· · · · · · · · · · · · · · · · · · ·	0	0	0	14	3 5	0	0	0	0	0	28	0
Payoum	0 0 0 1	0 0 0 0	0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 1	0 1 0 3	0 0 0 0	0 1 0 0	0 0 0 1 0	0 2 2 1 5	0 0 0 1 2	0 9 9 0	30 31 26 25	0 0 0
Siwa Bahariya Farafra Dakhla Kharga	0 0 0 0	0 0 0	0 9 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 1 3 7	0 0 0 0	0 0 0 0 0	31 31 31 30 30	0 0 0 0
Tor	0 0	0 0	0	0 0	0 0	- 0 0	0	0	1 0	0 0	- 5 0	0	0 0	30 29	0

0

Table A 5.—NUMBER IN HOURS OF OCCURRENCES OF CONCURRENT SURFACE WIND SPEED AND DIRECTION RECORDED WITHIN SPECIFIED RANGES

AUGUST 1969

	urs)	ours)	hours)			Numl	er in	liou:	rs of	occur of d	rence irectio	s of s	wind idicat	blowi e d	ing fi	om tl	ne
Station	Calm (hours)	Variable (hours)	Unrecorded (hours)	Wind speed in knots	/	015 / 044	1	1	105 / 134	1	165 / 194	1	1	1 /	1	531 314	All directions
Sallum	8	1	0	3-10 11-27 28-47 ≥48 All speeds	25 0 0	125 78 0 0 203	56 10 0 0 66	18 0 0 0 18	18 0 0 0 18	2 0 0 0 2	1 0 0 0	6 0 0 6	11 0 0 0	23 1 0 0 24	25 0 0	117 116 0 0 233	482 255 0 0 737
Мегка Matruh	33	0	0	1-10 11-27 28-47 >48 All speeds	141 16 () 157	30 1 0 0 31	4 3 0 0	6 2 0 0 8	2 1 0 0 3	3 0 0 0 3	4 0 0 0 4	4 0 0 0 4	37 0 0 0 37	115 0 0 0 115	63 6 0 0 69	156 117 0 0 273	565 146 0 0 711
Alexandrix	o	0	0	1—10 11—27 28—47 > 18 All speeds	21 8 0 0	12 1 0 0 13	1 0 0 0	1 0 0 0	0 0 0 0	7 0 0 0	16 0 0 0 16	5 0 0 5	5 0 0 0 5	11 0 0	1	125 42 0 0 167	528 215 1 0 744
Port Said	11	0	0	1 10 11 27 28 47 >- 48 All speeds	98 7 0 0 105	17 3 0 0 20	2 0 0 0	3 0 0 0 3	2 0 0 0 0	1 0 0 0	1 0 0 0	12 0 0 0 12	0 0 0	4 0 0	0	192 54 0 0 246	588 145 0 0 733
Tanta	102	0	5	1—10 11—27 28—47 ≥48 All speeds	21 0 0 0 21	9 0 0 9	7 0 0 0 7	0 0 0 0	0 0 0 0	3 0 0 0	39 0 0 0 39	58 0 0 0 58	0 0	123 0 0 0 123	231 0 0 0 231	75 0 0 0 75	637 0 0 0 637
Cairo	46	2	o	1—10 11—27 28—47 ≥48 All speeds	123 60 0 0 183	0	26 4 0 0 30		1 3 0 0 4	1 0 0 2	0 0 0 0	2 2 0 0 4	2 0 0 0 2	0	1 0 0	160 49 0 0 209	515 181 0 0 696
Fayoum	5	0	0	1—10 11—27 28—47 ≥48 All speeds	418 0 0 0 418	6 0 0	11 0 0 0 11	0 0 0 0	0 0 0	1 0 0 0 1	1 0 0 0	5 0 0 5	2 0 0 0	3 1 0 0	8 0 0 0 8	52 0 0 0 52	732 7 0 0 739
Minya	16	1	6	1—10 11—27 28—47 ≥48 All speeds	442 156 0 0 598	63 3 0 0	0 0 0 0	0 0 0	0 0 0 0	1 0 0 0	5 0 0 0	0 0 0 0	1 0 0 0	4 0 0 0 0 4	9 0 0 0	37 0 0 0 37	562 159 0 0 721

Table A 5 (contd.)—NUMBER IN HOURS OF OCCURRENCES OF CONCURRENT SURFACE WIND SPEED AND DIRECTION RECORDED WITHIN SPECIFIED RANGES

AUGUST - 1969

	ırs)	urs)	honrs)		2	Tumb	er in	hours ra	of o	occurr sf di	ences rectio	of v	vind 1 idicat	blowi: .ed	ng fr	om th	16
Station	Calm (hours)	Variable (hours)	Unrecorded (honrs)	Wind speed in knots	1 /	1	!	075 / 1 4	/	1	165 / 194	/	1	1 /	1/	5 315 / 4 344	ခို
Asyout	0	e	U	1 -10 11 27 28-47 248 Ail speeds	1 1 0 0 19	2 0 0 2	0 0 0 0	0	5 0 0 0 5	0 0 0 0	0 0 0 0	0 0 0 0	27 0 0 0 27	270 20 0 0 29)	250 59 0 0 309	19 0 0	646 98 0 0 744
Luxor(A)	2	3	0	1-10 11-27 28-47 248 All speeds	2 : 0 0 0 2 :	2 0 0 0 2	2 1 0 0 3	7 0 0 0 7	10 0 0 0 10	57 0 0 0 57	150 0 0 0 150	0 0 0	109 0 0 0 109	136 2 0 0 138	122 7 0 0 129	33 0 0 0 23	729 10 0 0 739
Aswen (A)	1	5	0	1-10 11 - 27 25 - 47 - 48 All speeds	190 51 0 0 241	53 12 0 0 65	13 4 0 0 17	1 1 0 0	2 1 0 0 3	5 0 0 0 5	6 0 0 0 6	2 0 0 0 2	7 0 0 0 7	39 1 0 40	30 0 0	187 63 0 0 250	575 163 0 0 738
Siwa	18	4	υ	1 - 10 11 - 27 28 - 47 - 48 All speeds	62 4 0 64	136 14 0 0 159	87 3 0 0 90	40 0 0 0 40	12 0 0 0 12	13 0 0 0 13	6 0 0 0 0 6	5 0 0 0 5	11 0 0 12	49 8 0 0 57	4 0 0	166 14 0 0	674 48 0 0 722
Dakhla	1	2	0	1 10 11 27 28 47 ~18 All spieds	34 0 0 78	15 20 0 0 35	4 0 0 0 4	4 0 0 0 4	4 0 0 0 4	4 0 0 0 4	11 0 0 0 11	15 0 0 0 15	0 0 0	130 1 0 0 131	137 1 0 0 138	44 0 0	641 100 0 0 741
Kharga	6	3	õ	110 11-27 28-47 >48 All spects	107 184 1 0 292	20 4 0 0 24	7 0 0 0 0 0 7	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 0 0 4	1 0 0 0 1	0 0 0	1 0 0 1	9 0 0 0 9	15 0 0 0 15	5 0 0	205 98 0 0 303	438 291 1 0 730
Hurghada	s	0	0	28-47 -48	0	5 21 0 0 26	4 0 0 0 4	2 0 0 0 2	4 0 0 0 4	3 0 0 0 3	0 0 0	0 0 0 0	1 0 0 0	4 4 0 0 8	0	41 332 12 0 385	122 601 13 0 736
Qaseir ,	15	0	7	1127 2847 -48	201 0 0	58 26 0 84	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 2	0 0 0 0 0 0	2 0 0 0 2	9 0 0 0 9	7 0 0 0 7	5 0 0 5	22 0 0 0 22	43 0 0 0 43	169 24 0 0 193	471 251 0 0 722

Table B 1.-- UPPER AIR CLIMATOLOGICAL DATA AUGUST - 1969

				Α(GUST —	1909					
Station	Pressure Surface (Millibar)	Alt	itude of Pro	essure Surfa	ce (gpm)		Temp	erature (°C)		Dew	Point (°C)
x 2	(Mimbar)	N	Mean	Highest	Lowest	N	Mean	Highest	Lowest	N	Mean
Мегза Маtruh 0000 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	27 27 27 27 27 27 27 26 26 26 26 23 13 13 9 5	* 1008mb. 95 1504 3154 4429 5891 7609 9708 10977 12464 14280 16696 18788 19725 20855 22316 24151	** 1012n.b. 132 1529 3190 4488 5978 7716 9834 11120 12620 14451 16868 18950 19893 21027 22434 24280	**1005mb. 71 1474 3113 4372 5826 7532 9606 10856 12326 14136 16562 18650 19616 20733 22141 24027	27 27 27 27 27 27 27 26 26 26 26 23 13 13 9 5	22.6 22.4 19.5 11.8 4.8 -4.7 -17.3 -31.4 -40.3 -51.2 -63.8 -74.8 -67.5 -63.9 -59.6 -50.6	25.0 21.5 22.2 15.8 9.9 -0.2 -13.1 -27.5 -37.0 -48.0 -61.9 -71.7 -65.8 -62.0 -51.8 -56.5 -43.0	19.4 20.5 15.5 6.8 -0.3 -9.5 -21.9 -35.2 -43.7 -53.5 -66.6 -79.9 -69.7 -66.8 -62.8 -59.1 -56.7	27 27 27 27 27 27 27 26 26 26 26 ——————————	20.0 19.8 8.1 -0.5 -8.1 -15.5 -28.2 -41.1 -49.1 -59.2
Helwan 0000 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20 10	30 30 30 30 30 30 29 28 26 26 24 21 14 12 10 8 6	993mb. 81 1494 3151 4429 5893 7616 9725 11003 12497 14319 16739 18851 19791 20928 22297 24145 26768	997mb. 110 1531 3198 4466 5944 7678 9826 11141 12686 14592 17129 19150 20159 21221 22394 24244 26788	991mh, 59 1466 3100 4368 5834 7576 9657 10920 12400 14210 16628 18750 19687 20818 22233 24093 26747	30 30 30 30 30 30 29 28 26 26 24 21 14 12 10 8 6	22.7 21.4 13.1 5.7 -3.9 -15.4 -29.9 -38.9 -49.7 -62.7 -74.7 -68.0 -65.7 -61.2 -55.8 -53.1 -49.6	28.3 26.2 15.8 9.2 0.5 -10.9 -22.9 -31.3 -41.2 -52.3 -67.4 -60.2 -62.1 -49.8 -53.8 -51.4 -49.0	20.5 15.8 9.0 1.3 -10.5 -22.4 -33.7 -41.7 -51.8 -65.0 -79.2 -75.0 -75.3 -75.5 -57.4 -50.2	30 28 28 28 28 26 25 24 23 1	18.4 3.5 -8.5 -15.1 -23.6 -32.9 -44.7 -52.7 -59.2 -63.2
Авwan 0000 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20 10	28 28 28 28 28 28 27 27 27 27 27 26 26 19 16 15 10 8 2	983mb. 44 1483 3156 4438 5899 7625 9739 11016 12511 14335 16735 18828 19754 20887 22283 24104 26805	984mb. 69 1503 3195 4480 5936 7672 9781 11062 12572 14410 16839 18900 19815 20986 22344 24180 26812	981mb. 24 1458 3120 4398 5874 7581 9661 10923 12403 14207 16599 18690 19639 20761 22215 24035 26798	28 28 28 28 28 27 27 27 26 26 19 16 15 10 8 2	28.7 	34.2 31.9 17.3 8.3 0.1 -11.5 -26.9 -36.6 -48.3 -61.5 -72.2 -59.2 -61.4 -59.0 -53.5 -51.5 -47.8	25.2 	28 28 29 28 28 27 27 27 27 27 27 27	7.4 -2.1 -8.5 -13.3 -21.6 -32.7 -44.9 -53.0 -62.0

N - The number of cases the element has been observed during the month.

^{*} The atmospheric pressure corrected to the elevation of the radiosonde station.

Table B 1 (contd.) - UPPER AIR CLIMATOLOGICAL DATA AUGUST — 1969

Station	Pressure Surface	Alt	titude of Pre	essure Surfac	ce (gpm)		Тетре	rature (°C)		Dew 1	Point (°C)
St.	(Millibar)	N	Mean	Highest	Lowest	И	Mean	Highest	Lowest	N	Mean
Mersa Matruh 1200 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20 10	29 29 29 27 25 18 16 11 10 8 8 4 4 3 3 3 2	** 1008mb 99 1516 3168 4442 5908 7629 9743 11018 12516 14342 16782 18905 19844 20985 22409 24268	1012mb. 134 1559 3229 4508 5962 7648 9803 11084 12585 14406 16824 18940 19860 21012 22438 24292 —	**************************************	29 28 29 27 25 18 16 11 10 8 8 4 4 4 3 3 3 3	27.9 27.0 20.5 12.2 5.2 -3.9 -15.5 -29.4 -39.6 -49.9 -62.9 -73.6 -67.1 -61.5 -57.1 -53.3 -56.6	32.0 31.8 27.0 15.4 S.2 -1.6 -10.7 -26.2 -36.2 -48.4 -60.3 -72.0 -66.0 -60.7 -55.7 -52.1 -51.7	26.0 25.0 16.2 6.1 2.0 -6.8 -19.8 -31.3 -41.4 -53.0 -65.0 -75.5 -68.2 -62.2 -59.2 -54.0 -61.6	29 28 29 27 25 18 14 11 10 7	19.6 18.8 0.5 -9.9 -17.5 -24.2 -34.4 -45.7 -54.1 -62.7
Helwan 1200 U.T.	Surface 1000 850 709 600 500 400 300 250 200 159 100 70 60 50 40 30 20	31 31 31 30 29 28 24 24 23 20 15 11 9 3 6 5 5	992mb, 73 1505 3165 4444 5912 7637 9750 11024 12518 14361 16788 18889 19843 20991 22411 24274 26908	996mb. 104 1538 3218 4493 5973 7798 9828 11102 12612 14441 16857 18950 19923 21035 22458 24325 26923	990mb. 50 1476 3109 4377 5837 7560 9649 10918 12399 14268 16698 18760 19777 20938 22366 24226 26882	31 31 30 29 28 24 23 20 15 11 9 8 6 5 5	33.2 21.8 13.6 6.1 3.3 -15.4 29.4 38.5 49.6 61.7 75.1 66.2 59.6 56.9 54.3 50.2 47.1	37.2 28.4 16.5 10.0 0.4 -11.4 26.5 36.0 -47.4 -59.9 70.7 -63.7 -55.6 -55.5 -53.6 -48.7 -44.3	30.2 	31 	13.0 -1.1 -10.8 -18.2 -26.1 -35.6 -47.4 55.3 63.6 -71.6
Aswan 1200 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20 10	29 29 29 27 27 26 26 24 22 22 19 15 7 7 7 5 4	983mb. 35 1499 3172 4455 5920 7646 9768 11050 12553 14384 16798 18910 19886 21018 22402 24262	984mb. 51 1523 3218 4500 5957 7709 9868 11168 12696 14554 16984 19087 20027 21160 22466 24311 26991	980mb. 12 1472 3132 4414 5881 7593 9701 10971 12459 14284 16692 18780 19781 20925 22341 24199 26875	29 27 27 26 25 24 22 22 19 15 7 7 5 5	39.8 26.7 15.3 7.9 -4.9 -14.5 -28.5 -37.8 -48.9 -62.5 -67.7 -62.7 -59.2 -55.6 -49.5 -45.8	44.7 32.4 19.0 9.4 1.6 -10.3 -22.0 -34.7 -45.3 -59.5 -68.5 -64.6 -61.9 -52.2 -54.0 -44.8 -43.4	35.5	29 29 27 27 26 24 23 22 22 2	7111117243547546372.

N = The number of cases the element has been sobserved during the month.

^{*} The atmosph ic pressure corrected to the elevation of the radiosonde station.

Table B 2.—MEAN AND EXTREME VALUES OF THE FREEZING LEVEL AND THE TROPOPAUSE, THE HIGHEST WIND SPEED IN THE UPPER AIR

AUGUST — 1969

-					Fı	eczing	Level							Firs	st Trope	pause				Hig	hest	wind s	peed
			Mean			Highes	st	!	Lowest			Mean			Highe	st	:	Lowest	:	â	<u> </u>		ots
	Station	Altitude (gpm)	Prossure (mb.)	Dew point (°(')	Altitude (gpm)	Pressure (mb.)	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Dew point (°(')	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.	Direction (000—360)	Speed in Knots
		(N)	(N)	(N)					: - -		(N)	(N)	(X)				: : :					!	
U.T.	M. Matruh (A)	5192 (27)		12.1 (27)	5940	502	- 9.3	4370	601	- 8.1	15987 (17)		-73.1 (16)	17230	91		14890	133	68.9	13100	179	200	102
1 0000	Helwan	5349 (30)	536 (30)	-19.8 (28)	6000	495	-19.1	4600	590	-10.3	16231 (13)	110 (13)		18380	81	70.6	15260	128	~-72.4	15360	128	160	76
	Aswan (A)	5223 (27)		17.1 (27)	5990	495	25.1	4700	580	9.8	16477 (20)		75.9 (20)	17790	84	78.4	15300	117°-	73.5	21900	027	090	75
		(N)	(N)	(N)							(N)	(N)	(N)	!						!	*		
į	/ M. Matruh (A)	5287 (19)		19.3 (19)	5810	515	-22.6	4840	572	14.2	16234 (4)	110 (4)	72.4 (4)		100	74.2	15670	121	70.4	8130	370	240	66
1200 U.T.	Helwan	5457 (28)	531 (28)	-22.7 (27)	6330	476	-20.8	4660	685	12.2	16521 (10)	105 (10)	-73.5 (10)	16825	100	76.8	15500	126	-~70.4	10460	268	240	6 6
12	Aswan (A)	5320 (25)		21.7 (24)	6190	486	-25.9	4770	574		16582 (16)	104 (16)	-75.5 (16)	16790	88	-77.0	15430	123	75.3	14420	147	135	76

N - The Number of cases the element has been observed during the month.

Table B 3. - NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES.

MERSA MATRUH (A) -- AUGUST 1969

Station	Prussure Surface (Millibar)	Wind between specified ranges of direction (000—360°)
0000 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20 10	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
1200 U.T.	Surface 1006 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

N = The number of cases the element has been observed during the month.

TN = The total number of cases the wind has been observed for all directions during the month.

Table B 3 (contd.)—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAEN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRUSSURE SURFACES.

HELWAN (A) - AUGUST 1969

						_		V	Wind	betw	een s	pecifi	ed rai	nges e	of dir	ection	(000)	36 0	°)						!	calm	er of (TIN)	rind (
Station	Prussure Surface (Millibar)	34	15 / 14		15	04 / 07	i		75 / 04	İ	05 / 35		35 / 64			19 / 22	95 24	22 / 25	1	25 / 28	-	28 31	1	31	1	of sta	1 25	scalar wind d (knots)
Ž.	()	N	(ff)	Ŋ	(ff)	N	(ff)	N	(ff)	N	(ff)	1	(ff)		(ff)		(ff)	N	(ff)	N	(ff)		(ff) m	N	(ff)	Number win	Total numbobservations	Mean so speed
0000 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	16	6 18	3 0 1 0 0 0 0 0 0 0 	7 14 -5 	3 0 1 0 1 0 1 0 0 0 0 0 0	12 15 3	0 1 1 0 1 1 0 0 1 1 0 0 0 0 0	12 2 5 21 17 33	0 0 1 2 1 3 2 3 0 0 1	3 8 8 20 10 22 18 12 22 75	0 2 0 0 1 1 4 4 6 3 0 0	15 	0 1 1 0 6 1 8 6 7 5 3 0 -	11 13 18 25 26 31 38 43 48 ——————————————————————————————	0 -1 5 8 5 8 1 3 2 2 1 0 -	8 17 17 22 25 20 34 24 35 29	0 5 2 9 7 10 8 7 5 3 0	8 10 19 14 22 24 29 33 34	0 3 6 3 5 4 6 6 2 2 2 0 0 0 0	12 15 21 14 22 24 22 50	5 6 5 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		6 5 5 2 0 0 0 0 0 0 0 0	5 -17 10 18 	2 0 0 0 0 0 0 0 0 0 0 0 0	30 30 30 30 30 28 26 26 23 19 7 1 ————————————————————————————————	5
1200 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20 10	8 -4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 17	3	10 10 12	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 1 1 1 0 0 1 0 1 3 1 1 2 1		0 1 1 0 2 2 2 1 1 2 1 2 2 1 0 0 1 0 0 0 0	6 9 20 13 22 37 23 24 23 24 23 34 38	3 1 3 0 1 5 4 4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	2 14 20 15 33 30 20 19	0 1 8 9 7 6 4 2 2 1 0 0 0 0 0		1 10 3 11 8 3 2 2 1 0 0 0 0	8 -15 13 222 18 18 18 33 39 50	1 3 1 7 2 3 3 3 0 0 0 0 0 0 0	4 	1 0 0 0 0 0 0	8 7 17 9 18 62 117 - -	8 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31 	8

N = The number of cases the wind has been observed for the range of direction during the month.

TN = The total number of cases the wind has been observed for all directions during the month.

Table B 3 (contd.)—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES.

ASWAN (A) - AUGUST 1969

	1	
Station	Prussure Surface (Millibar)	Wind between specified ranges of direction (000—360)° 345
0000 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20 10	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
1200 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

N = The number of cases the wind has been observed for the range of direction during the month.

TN = The total number of cases the wind hasbeen observed for all directions during the month.

REVIEW OF AGRO_METEOROLOGICAL STATIONS

TAHRIR — AUGUST 1969

This month was slightly cooler than last August. The daily maximum air temperatures were slightly below normal most of the month. Three weak heat waves were experienced during the periods (3rd - 4th), (16th - 20th) and (27th - 28th). The first heat wave yielded the highest maximum air temperature for the month (36.4°C) on the 3rd.

The extreme maximum soil temperatures were lower than the corresponding values of last August at all depths between 2,100 cm., and the differences ranged between 4.8°C at both 2,5 cm. and 1.2°C at 100 cm. The extreme minimum soil temperatures were higher than last August at depths between 2,50 cm. with differences ranging between 1,1°C at 5 cm. and 0.1°C at 50 cm. At 100 cm. depth the extreme minimum soil temperature was slightly lower (0.3°C) than last August.

The daily mean pan evaporotion was 0.17 mm. less than the corresponding value of August 1968. The daily mean actual duration of bright sunshine was 0.3 hour less than August 1968.

BAHTIM - AUGUST 1969

This month was the same as last August with respect to the mean daily air temperature. The daily maximum air temperatures were below normal most of the month.

A short heat wave occurred on the 4th yielding the highest maximum air temperature for the month (39.6°C).

The extreme maximum soil temperatures were lower than the corresponding values of last August at depths between 2,50 cm. with differences ranging between 6.3°C at 2cm. and 0.1°C at 50cm. At 100 cm. depth the extreme maximum soil temperature was slightly higher (0.4°C) than last August. The extreme minimum soil temperature at 2 cm. depth was 1,1°C lower than last August. At other depths between 5,100 cm. the extreme soil minima were higher than last August with differences ranging between 0.9°C at 10 cm. and 0.2°C at 50 cm.

The daily mean pan evaporation was 0.62 mm. less than the corresponding value of August 1968. The daily mean actual duration of bright sunshine was 0.3 hour less than the corresponding value of August 1968.

KHARGA - AUGUST 1969

This month was slightly cooler than last August. The month was characterized by three heat waves during the periods (3rd - 4th), (16th - 21st) and (25th - 31st). The first heat wave yielded the highest maximum air temperature for the month (43.7°C) on the 4th.

The extreme maximum soil temperature was 0.9°C higher than last August at 2 cm. depth, and lower at other depths with differences ranging between 0.8°C at 20 cm. and 0.2°C at 100 cm. The extreme minimum soil temperatures were lower than last August at all depths except at 50 cm. where it was slightly higher (0.2°C), the differences ranged between 1.2°C at 2 cm. and 0.2°C at 100 cm.

The daily mean pan evaporation was 0.93 mm. less than the corresponding value of August 1968. The daily mean actual duration of bright sunshine was the same as August 1968.

Note.—From August 1969, operation of the Agrometeorological station at El Kasr was stopped. Starting from the following month-September 1969, agrometeorological observations were taken at Mersa Matruh station, about 15 kms to the east of El Kasr and its monthly review and monthly values will be included in this bulletin.

Table C 1.—AIR TEMPERATURE AT 12 METRES ABOVE GROUND AUGUST -1969

		Air Tem	iperatu r e	; (°C)				Mean	Duratio ab			daily a	_	erature		
STATION	Mean Max.	Mean Min.	Mean of the day	Night time mean	Day time mean	5°C	0°C	5°C	10°C	15°C	20°C	25°C	3 ∪°C	35°C	40°C	45°(
Tahrir	33.9	19.5	25.8	22.2	28.6	24.0	24.0	24.0	24.0	24.0	21.8	12.0	6.2	0.0	0.0	0.0
Bahtim	33.3	18.3	25.0	21.1	28.0	24.0	24.0	24.0	24.0	24.0	20.1	10.9	5.4	0.1	0.0	0.0
Kharga	39.3	22.7	31.8	28.4	34.7	24.0	24.0	24.0	24.0	24.0	23.9	20.9	14.4	7.8	1.2	0.0

Table C 2. -EXTREME VALUES OF AIR TEMPERATURE AT $1\frac{1}{2}$ METRES ABOVE GROUND, ABSOLUTE MINIMUM AIR TEMPERATURE AT 5cms ABOVE GROUND OVER DIFFERENT FIELDS.

				A	UGUST	1969	9					
	Max. T	l'emp, at	11 ₂ metr	res (°C)	Min.	Temp. at	1½ metrei	(°C)	Min, T	emp. at	5 cms. abo	ve (°C)
Station	Hight	est	Lo	owest	High	it est	Lov	vest	Dry	soil	Gre	88
STATION	Value	Date	Value	Date	Value	Date	Value	Date	Value	Date	Value	Value
Tahrir	36.4	3	32.2	11	22.5	15	16.9	17	15.3	17	_	_
Bahtim	3 9.6 .	4	30.8	10	20.8	1	15.1	10	13.0	10		-
Kharga	43.7	4	36.0	10,11,12	27.6	5	18.4	11	16.0	11	-	_

Table C 3. (SOLAR + SKY) RADIATION, DURATION OF BRIGHT SUNSHINE, RELATIVE HUMIDITY, VAPOUR PRESSURE AT 13 METRES ABOVE GROUND, EVAPORATION & RAINFALL.

					AUGUS	T ·	1969							
	Radiation m²	Duration of Bright Sunshive (hours)	Rela	ative	Humidity		Vapour pre	essure (mn	18)		oration ims)	ŀ	Rainfall (mms)	
Stat _* on	(Solar + Sky) Rac gm. cal.cm ²	Total Actual monthly Total Possibly monthle	Mean of day	1200 U.T.	Lowest Date	Mean of day	1200 U.T. Highest	Date Lowest	Date	Piche	Pan class A	Total Amount Monthly	Max. Fall in one day	Date
Tahirr	655.7	340.5 409.6 83	68 72 27	-		16.6	14.5 21.1 15.7 21.6 9.1 16.6	20 10.7 15 12.1 31 5.1	10	6.8		0.0	0.0 0.0 0.0	

Note.-The number of records for the sunshine at Kharga was 28 days only.

Table C 4. EXTREME SOIL TEMPERATURE AT DIFFERENT DEPTHS (cms) IN DIFFERENT FIELDS

AUGUST 1969

Stanion	Highest (H) Lowest (L)		Extre			ature (° lepths	°C) in di (cms.)	ry field					perature ent dephi	• •	-
	Hig Lo	2	5	10	20	50	100	200	300	2	5 10	20	50 100	200	3 00
Tahrir , .	H L		47.0 26.5			32.0 30.9	30.6 30.3	29.1 28.6	28.2 27.8			- -		_ _	-
Bahtim	H L	53.6 27.4	45.6 28.4				30.7 30.0	27.6 26.6	25.7 25.0		_	_ -			-
Kharga	H L	58.4 21.5		43.5 29.4			33.3 32.6	31.1 30.4			!	_ _			_

Table C 5 .- SURFACE WIND

AUGUST --- 1969

STATION		Speed n } metr			Days	with surfa	ce wind s	peed at 10) metres		Max, Gus at 10	
STATION	of the	time !	day time mean	> 10 knots	>15 knots	≥20 knots	>25 knots	≥30 knots	≥35 knots	>40 knots	value	Date
Tahrir	2.4	1.6	3.2	31	8	•	=	a co and			21	6.30
Bahtim			-	25	6			→ ~	*****		23	29
Kharga	4.0	2.8	5.2	31	28	14	7	3	1		42	21,29

PRINTED IN ARAB REPUBLIC OF EGYPT BY THE GENERAL ORGANIZATION FOR GOVT. PRINTING OFFICES. CAIRO

First Under-Secretary of State

ALY SULTAN ALY

Chairman of the Board of Directors

MONTHLY WEATHER REPORT

VOLUME 12

NUMBER 9

SEPTEMBER, 1969

.

U.D.C. 551. 506.1 (62)

PUBLICATIONS OF THE METEOROLOGICAL AUTHORITY OF THE ARAB REPUBLIC OF EGYPT—CAIRO

In fulfilment of its duties, the Egyptian Meteorological Authority issues serveral reports and publications on weather, climate and agro-meteorology. The principal publications are described on this page.

Orders for publications should be addressed to :

"Chairman of the Board of Directors, Meteorological Authority, Kubri-el-Qubbeh - CAIRQ".

THE DAILY WEATHER REPORT

This report is issued daily by the Meteorological Authority since the year 1901. It includes surface and upper air observations carried out by the relevant networks of the Republic at the principal hours of observations.

As from January 1968 this report was revised to include a condensed representative selection of surface and upper air observations besides the 1200 U.T. surface & 500 mb charts.

As from 1st January 1972, the Daily Weather Report will not be issued or distributed because it does not serve no longer any good purpose as it used to be in the past. The Meteorological Authority is ready to supply the recipients of the Report with any information used to be included in it, if they so desire.

THE MONTHLY WEATHER REPORT

First issued in 1909, the Monthly Weather Report served to give a brief summary of the weather conditions that prevailed over Egypt during the month, with a table showing the mean values for few meteorological elements and their deviations from the normal values. From 1954 to 1957 this report was in a rapid state of development and extension resulting into a voluminous report on January 1958 giving surface, upper air, and agro-meteorological data for Egypt.

As from January 1964, the Monthly Weather Report was pressed to give climatological data for a representative selection of synoptic stations.

THE AGRO-METEOROLOGICAL ABRIDGED MONTHLY REPORT

Gives a review of weather experienced in the agro-meteorological stations of Egypt as well as monthly values of certain elements.

THE ANNUAL REPORT

This report gives annual values and statistics for the various meteorological elements, together with a summary of the weather conditions that prevailed during all months of the year.

CLIMATOLOGICAL NORMALS FOR EGYPT

A voluminous edition was issued in March 1968 which brings normals and mean values up till 1960.

METEOROLOGICAL RESEARCH BULLETIN

First issued in January 1969 on a bi-annual basis. It includes research works carried out by members of staff of "The Meteorological Institute for Research and Training" and the Operational Divisions of the Meteorological Authority.

TECHNICAL NOTES

As from October 1970, the Meteorological Authority started to issue a new series of publications in the form of Technical Notes (non periodical) on subjects related to studies and applications of meteorology in different fields for the benefit of personnel working in these fields

MONTHLY WEATHER REPORT

VOLUME 12 NUMBER 8

SEPTEMBER, 1969

U.D.C. 551, 506.1 (62)

CONTENTS

General Summary of Weather Conditions	
	2
SURFACE DATA	
Table A1.— Monthly values of the Atmospheric Pressure, Air Temperature, Relative Humidity, Bright Sunshine, Duration and Piche Evaporation	}
" A2.—Maximum and Minimum Air Temperatures	i
" A3.—Sky Cover and Rainfall	i
" A1.—Number of Days of Occurrence of Miscellaneous Weather Phenomena 6	í
,, A5.—Number in Hours of Occurrences of Concurrent Surface Wind Speed and Direction Recorded Within Specified Ranges	
UPPER AIR DATA	
Temperature & Dew point at Standard and Selected Pressure Surface 9.10	
B2.—Mean and Extreme values of The Freezing Level and The Tropopause; The Highest Wind Speed in The Upper Air	
B3. —Number of Occurrences of Wind Direction within Specified Ranges and The Mean Scalar Wind Speed at the Standard and Selected Pressure Surfaces	
AGRO-METEOROLOGICAL DATA	
Reviews of Agro-meteorological Stations	
le C1.—Air Temperature at 1½ metres above Gorund	
C2.—Absolute Values of Air Temperature at 1½ metres above Ground, Absolute Minimum Air Temperature at 5 cms above Ground over Different Fields	
C3.—(Solar + Sky) Radiation, Duration of Bright Sunshine, Relative Humidity and Vapour Pressure at 1½ metres above Ground, Evaporation and Rainfall 17	
C1.—Extreme Soil Temperature at Different Depths in Different Fields 18	
, C5.—Surface wind	
Note: For explanatory notes on the tables please refer to Volume 12, Number I (January 1969).	

GENERAL SUMMARY OF WEATHER CONDITIONS

SEPTEMBER 1969

Rise in temperature above normal in general. Scattered early morning mist over Lower Egypt and Cairo.

GENERAL DESCRIPTION OF WEATHER

The prevailing weather during this month was generally mild in the northern parts, rather hot in the middle parts and remarkably hot in the southern parts. Three variant heat waves prevailed most days of the month, and were mainly pronounced in land areas. The third heat wave was the most pronounced and prevailed most of the second half of the month. The break down of the heat waves was followed by short mild periods.

The month was rainless, apart from 2.8 mms. over Sallum and 0.8 mms. over Sidi Barani on the 30th.

Rising sand blew during several days over scattered places, mainly in the Western Desert and Red Sea districts. Scattered early morning mist developed during several days over Lower Egypt and Cairo areas.

PRESSURE DISTRIBUTION

The most outstanding features of pressure distibution over the surface maps during this month were:

- -The Atlantic anticyclone and its eastward extension.
- —Deep depressions moving through North Europe, and secondary depressions through Central Europe.
- $-\Lambda$ ridge of high pressure over Central Mediterranean and Libya.

-The complex monsoon low pressure over the Arabian gulf, Arabia and North Sudan.

The barometric pressure over Egypt during this month oscillated slightly round normal and experienced six falls reaching its corresponding minima round the 3rd, 8th, 13th, 17th, 23rd, and 27th respectively. The first two falls were due to the slight deepening and elongation of the trough over the Arabian gulf through East Mediterranian. The other four pressure falls were caused by the northward elongation of the Sudan trough. It is noteworthy that these elongations of the monsoon were favoured by the transit of secondary lows or troughs north of the Black Sea area and its vicinities.

On the other hand the barometric pressure over Egypt experienced rises with its corresponding maxima round the 5th, 9th, 16th, 21st and 25th respectively. These pressure rises occurred when high pressure over Central Mediterranean and Libya extended slightly eastwards.

The most important features of pressure distribution over the upper air charts during the month were:

- —Deep upper low pressure systems over North Russia and North Atlantic.
- —Secondary upper lows or troughs over middle latitudes, passing through East Mediterranean on the 6th, 14th and 20th.
- -Upper high pressure belt south of latitude 30°N.

SURFACE WIND

The prevailing winds during this month were generally light to moderate and blew from directions between NW and NE. They became fresh to strong during many days of the month over scattered places in the Western Desert and Red Sea districts.

Gales were reported at Dakhla on the 4th.

TEMPERATURE

Three heat waves prevailed most of this month. Maximum air temperature was above normal in general, and the departure was slight to moderate during the first and second heat waves and moderate to large during the last heat wave. During the mild periods maximum air temperature was slightly below normal.

Maximum air temperature values ranged generally between 28° & 32°C in the northern parts, between 32° & 37°C in the middle parts and between 39° & 44°C in the southern parts.

Cairo, March 1972

The absolute maximum air temperature for the month was 47.0°C reported at Kon Ombo on the 1st.

Minimum air temperature was also above normal most days of the month and slightly below normal during few days. The departures above normal were slight to moderate in general.

Minimum air temperature values ranged generally between 18° & 23°C in the north ern and middle parts and between 22°C & 27°C in the southern parts.

The absolute minimum air temperature for the month was 14.6°C reported as Beni Suef on the 13th.

PRECIPITATION

No precipitation was reported during this month with the exception of 2.8 mms or rain over Sallum and 0.8 mm. over Sidi Barrani on the 30th.

The highest daily rainfall was 2.8 mm reported over Sallum on the 30th which was also the highest monthly rainfall.

Chairman (M. F. TAHA)

Board of Directors

Table A 1.—MONTHLY VALUES OF THE ATMOSPHERIC PRESSURE, AIR TEMPERATURE, RELATIVE HUMIDITY, BRIGHT SUNSHINE DURATION & PICHE EVAPORATION SEPTEMBER 1969

	1	spheric				Air '	Temperati	O° erg				Rel	ative	Brig	tht Sunsh	ine	mme.)
<i>~</i>	ſ	re (mbs) S.L.	Мах	imum	Min	imum		Dry	Bulb	Wet	Bulb	Humi	dity %	Dur	stion (Ho	ours)	stion (
Station	Mean	D.F. Normal or Average	(А) Мевц	D.F.Normal or Average	(B) Mean	D.F.Normal or Average	$\begin{array}{ c c }\hline A+B\\\hline 2\\\hline \end{array}$	Mean	D.F.Normal or Average	Mean	D.F.Normal or Average	Mean	D.F.Normal or Average	Total Actual	Total Possible	%	Piche Evaporation (mma.)
Ballum	1011.6 1013.5 1012.8 1011.7	-2.2 -0.2 +0.2 -0.2	30.6 29.1 30.3 29.6	+1.3 +0.5 +0.8 +0.4	22.3 20.2 21.8 24.3	+2.1 +0.6 +0.6 +0.5	26.4 24.7 26.0 27.0	25.8 24.7 25.8 26.6	+1.0 +0.5 -0.2 +0.5	21.3 21.1 21.8 23.1	+1.2 +1.1 +0.6 +1.0	66 71 69 73 —	+3 +4 +1 +4 	313.8 324.6 (*298.3)	371.1 370.8 (346.2)	85 88 86 —	7·2 6.8 6.3 7·4
Tanta	1012.3	+0.4	33.8	+1.4	19.6	+2.0	26.7	25.6	+1.1	21. 2	+1.4	6 6	+3	312.3	370.3	84	5.0
Cairo, (A)	1011.6	+1.0	34.0	+1.7	20.9	+1.0	27.4	26.8	+1.3	21.1	+0.9	58	0	-	-	_	13.5
Fayoum	1010.2 1009.3 1007.5 1006.9	-0.8 -1.1 -0.8 -1.1	36.5 36.0 37.3 39.6 41.9	+2.8 +2.6 +2.4 +1.3 +2.7	20.7 19.3 19.7 22.7 24.6	+1.1 +0.7 -0.4 +1.3 +2.5	28.6 27.6 28.5 31.2 33.2	28.0 27.6 28.8 32.1 33.2	+1.6 +2.0 +1.3 +2.1 +2.4	21.3 20.4 19.8 19.9 18.3	+1.6 +0.8 +1.3 +0.5 +1.1	53 48 40 28 17	+2 +7 +1 +4 -2	320.2	369.7	87 —	7.8 13.9 17.6 13.1 28.4
Biwa	1012.2 1011.3 1011.7 1009.8 1008.3	-1.2 -0.6 -1.5 -0.4 -1.7	37.4 37.6 38.9 39.7	+2.5 +3.4 +3.2 +3.3 +3.1	21.1 21.7 20.4 22.5 25.1	+2.8 +2.9 +1.5 +2.2 +3.8	29.2 29.6 29.0 30.7 32.4	29.2 29.1 29.2 30.7 32.2	+2.3 +2.5 +2.5 +2.7 +3.6	19.6 20.0 18.7 18.4 19.3	+1.1 +1.4 +2.2 +1.2 +1.4	36 39 32 25 29	-5 -4 +1 -3 -3	311.1 — — 329.3	372.8 — — — 368.9	84 - - - 89	14.6 11.0 16.6 22.5 26.2
	1007.8 1007.8	_0.4 _0.6	32.8 31.0	+2.0 -0.9	24.6 25.8	+1.5 +0.6	28.7 28.4	29.0 29.1	+1.2 +1.2	22.3 22.1	+1.3 +0.9	54 52	- +2 -1	- - -	=		15.4 18.0

^{*} Actual number of sunshine records at Port Said was 28 days only.

Table A 2.—MAXIMUM AND MINIMUM AIR TEMPERATURE
SEPTEMBER 1969

		•	Ма	ximum Te	mperat	ure °C				Grass I			- 	Minimur	n Tempera	ture °C			
Station	Highest	Date	Lowest	Date	No	o, of Da	ys with	мах-Т	'e mp .	Mean	Dev. From Normal	Highest	Date	Lowest	Date	No	o, of D Min.	ays wit Temp.	h
	High	Ã	Lo	Ď	>25	>30	>35	>40	>45	Ň	Dev. Fron	Hig	Ğ	Lov	А	<10	< 5	<0	<-5
Sallum	39.8 33.1 34.5 31.3 —	19 16 23 8	27.0 27.2 27.7 28.5 —	28 27,30 30 13 —	30 30 30 30 —	14 4 14 6 —	2 0 0 0 -	0 0 0 0 -	0 0 0 0 -	21.8 18.5 20.2 23.4	11111	25.0 23.8 25.0 25.5 —	25 25 8 23 —	18.7 16.4 18.2 23.0	30 22 12 10 —	0 0 0 0	0 0 0 -	0 0 0 -	0 0 0 -
Tanta	36 .3	17	31.2	10	30	30	4	0	0	_	_	21.4	2	17.3	12	0	0	0	0
Cairo(A)	38.1	17	30.4	10	30	30	8	0	0	-	_	22.6	5.8	18.7	28	0	0	0	0
Fayoum (A) Minya (A) Assyout (A) Luxor (A) Aswan (A)	41.8 39.7 42.0 46.0 45.6	17 17 17 24 1	33.2 32.8 32.2 37.5 38.4	10 15 10 7 15	30 30 30 30 30	30 30 30 30 30	22 18 26 30 30	1 0 5 23 21	0 0 0 3 3	19.3 16.1 19.7 20.2		22.6 22.7 24.0 28.2 29.5	2 1 26 3 24	19.1 17.2 19.0 19.0 20.4	10,14 13 13,22 20.21.22	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
Siwa	42.4 41.3 41.8 45.2 45.4	20 20 25 26 25	33.7 33.6 33.4 33.8 34.4	11 10 10 10 10	30 30 30 30 30	30 30 30 30 30 30	26 26 24 27 29	4 3 6 10 14	0 0 0 1 2	18.6 19.8 17.4 ————————————————————————————————————	= = = = = = = = = = = = = = = = = = = =	23.4 24.0 23.8 29.8 30.1	25 25 19·26 18 27	18.5 19.8 18.7 18.4 21.3	11 30 3 14 4	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
Tor	35.3 35.4	27 27	30.7 30.6	16 16	30 30	30 30	- 2 1	0 0	0 0	18.8	-	28.2 28.6	1 2	22.4 23.7	17 16	0 0	0 0	0 0	0 0

		Mea	a Sky Cov	er Oct.					Rain	fall mms.						
Station	00	06	12	18	Daily	Total	D. From	1 - "	r. Fall ne day	1	Number	of Day	rs with	Amount	of Rai	in,
	U.T.	U,T.	U.T.	U.T.	Mean	Amount	Normal	Amount	Date	<0.1	≥0.1	≥1.0	≥5.0	≥10	≥25	≥ 50
Sallum	2.2 1.2 2.9 —	1.6 3.2 3.1 2.1	1.6 2.2 2.3 1.0	1.4 2.0 2.5 —	2·3 2·1 2·7	2.8 0.0 0.0 0.0	+2.1 -1.0 -0.5 -0.1	2.8 0.0 0.0 0.0	30 	0 0 0 0 0 -	0 0	1 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
Ghazza	0.5	1.5	0.8	0.3	0.9	0.0	-0.2	0.0	_	0	0	0	0	0	0	0
Cairo (A)	1.0	3 .0	0.9	0.3	1.4	0.0	tr,	0.0	_	0	0	0	0	0	. 0	0
Fayoum (A) Minya (A) Assyout (A) Luxor (A) Aswan (A)	0.3 0.4 0.9 0.6	1.5 1.1 0.3 0.7 1.0	0.4 0.3 0.2 0.8 1.4	0.3 0.3 0.3 1.2 1.5	0.5 0.3 0.9	0.0 0.0 0.0 0.0 0.0	0.0 0.1 tr. 0.1 0.0	0.0 0.0 0.0 0.0 0.0		0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0
Siwa	0.6 0.4 - 0.7 0.8	1.1 1.1 0.1 0.6 0.5	1.3 0.6 0.2 0.3 0.4	0.6 0.5 0.1 0.5 0.6	0.9 0.7 	0.0 0.0 0.0 0.0 0.0	-0.1 -tr, 0.0 0.0 -tr,	0.0 0.0 0.0 0.0 0.0 0.0		0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0
Tor	0.4 1.0	- 1.0 1.1	1.1	- 0.8 1.4	0.9 1.1	0.0 0.0	0.0 —tr,	0.0		0 0		0 0	_ 0 0	_ 0	- 0 0	- 0 0

Table A 4. DAYS OF OCCURRENCE OF MISCELLANEOUS WEATHER PHENOMENA

SEPTEMBER 1969

		Preci	pitation		,		1000 metres	Vis Metres	8 res	Vis	Sandrising 1000 Metros	storm			
Station	Rain	Snow	Ice. Pellets	Hail	Frost	Thunderstorm	Mist Vis ≥ 1000	Fog Vis < 1000 Met	Haze Vis ≥1000 Metres	Thick Haze Vis	Dust or Sandrising Vis ≥ 1000 Metres	Dust or Sandstorm Vis <1000 Metres	Gale	Clear Sky	Cloudy
Sallum	1 0 0 0	0 0 0 0 -	0 0 0 0 -	0 0 0 0	0 0 0 0 -	1 0 0 0 -	0 2 2 0 —	0 1 3 0 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 -	1 5 0 0	0 0 0 0 -	0 0 0 0	19 14 10 —	1 1 0 - -
Tenta	0	0	0	0	0	0	5	1	0	0	0	0	0	26	0
Cairo (A)	0	v	0	0	0	0	12	3	5	0	0	0	0	. 22	o
Fayoum (A) Assyout (A) Luxor (A) Aswan (A)	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 5 0 0	9 0 0 0	0 0 0 2 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	27 29 24 24	0 0 0 0
Siwa Bahariya Farafra Dakhla Kharga	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 1 0	0 0 0 0	0 0 0 5 6	0 0 0 1 0	0 0 0 1 0	26 26 26 25	0 0 0 0
Tor	0	0	0	0	- 0 0	- 0 0	- 0 0	- 0 0	0	0 0		0 0	0 0	24 23	0

Table A 5.—NUMBER IN HOURS OF OCCURRENCES OF CONCURRENT SURFACE WIND SPEED AND DIRECTION RECORDED WITHIN SPECIFIED RANGES SEPTEMBER — 1969

	urs)	urs)	hours)			Numi	oer in		rs of						ng fr	om th	10
Station	Calm (hours)	Variable (hours)	Unrecorded (hours)	Wind speed in knots	345 / 014	015 / 044	045 / 074	075 / 104	105 / 134	1 [165 / 194	195 / 224	/	1	- /	531 / 344	All directions
Salluma	15	0	0	1—10 11—27 28—47 ≥48 All speeds	20 3 0 0 23	71 17 0 0 88	152 50 0 0 202	74 1 0 0 75	46 2 0 0 48	19 0 0 0 19	9 0 0 9	2 0 0 0 2	12 4 0 0 16	19 3 0 0 22	57 17 0 0 74	98 29 0 0 127	579 126 0 0 7 9 5
Mersa Matruh	86	0	0	1—10 11—27 28—47 ≥48 All speeds	110 10 0 0 120	160 22 0 0 182	37 6 0 0 43	15 0 0 0 15	22 0 0 0 22	9 0 0 9	7 0 0 0 7	24 0 0 0 24	43 0 0 0 43	59 0 0 0 59	31 14 0 0 45	61 54 0 0 115	578 106 0 0 684
Alexandria	8	o	0	1—10 11—27 28—47 ≥48 All speeds	79 6 0 0 85	19 0 0 0 19	6 0 0 6	6 0 0 0 6	6 0 0 0	9 0 0 0 9	13 0 0 0 13	5 0 0 0 5	2 0 0 0 2	43 12 0 0 55	52 0 0	280 41 0 0 321	601 111 0 0 712
Port Said	6	1	0	1—10 11—27 28—47 ≥48 All speeds	192 22 0 0 214	70 0 0 0 70	5 0 0 0 5	1 0 0 0	2 0 0 0 2	1 0 0 0 1	5 0 0 0 5	4 0 0 0 4	30 0 0 0 30	28 12 0 0 40	60 34 0 0 94	224 23 0 0 247	622 91 0 0 713
Tanta	131	0	0	1—10 11—27 28—47 ≥48 All speeds	65 1 0 0 66	8 0 0 0 8	2 0 0 0 2	1 0 0 0	2 0 0 0 2	1 0 0 0 1	18 0 0 0 18	19 0 0 0 19	51 0 0 0 51	96 1 0 0 97	163 0 0 0 163	160 1 0 0	586 3 0 0 589
Cairo	3 6	0	14	1—10 11—27 28—47 ≥48 All speeds	91 58 0 0 149		0	27 1 0 0 28	1 0 0 0	1 0 0 0 1	0 0 0 0	0 0 0	4 0 0 0 4	14 0 0 0 14	20 0 0 0 20	64 30 0 0 94	445 225 0 0 \$70
Fayoum	6	0	11	1—10 11—27 28—47 ≥48 All speeds	395 1 0 0 396	21 0 0	5 0 0 0 5	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 0 0 1	0 0 0 0	0 0 0 0	0 0 0 0	34 0 0 0 34	681 22 0 0 763
Міп ув	1	0	2	1—10 11—27 28—47 ≥48 All speeds	443 190 0 0 633	19 0 0	0 0	0 0 0	0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0	24 0 0 0 24	508 209 0 0 717

Table A 5 $(cont\,l.)$ —Number in Hours of occurrences of concurrent surface wind speed and direction recorded within specified ranges

SEPTEMBER - 1969

	ırs)	urs)	honrs)		r	\umb	er in					s of w			ng fre	om th	10
Station	Calm (hours)	Variable (hours)	Unrecorded (hours)	Wind speed in knots	345 / 014	015 / 044	/		105 / 134	1	11	11			1	315 / 344	2
A syout (A)	0	0	47	1—10 11—27 28—47 ≥48 All speeds	3 0 0 0 3	0 0 0 0	1 0 0 0	1 0 0 0	1 0 0 0	70 0 0 0 0	147 31 0 0 128	77 49 0 0 126	45 47 0 0 92	94 18 0 0	39 37 0 0	9 4 0 0	487 186 0 0 673
Luxor (A)	5	6	0	$ \begin{array}{c c} 1 - 10 \\ 11 - 27 \\ 28 - 47 \\ \geq 48 \\ \text{All speeds} \end{array} $	86 0 0 0 86	27 0 0 0 27	12 1 0 0	34 0 0 0 34	18 0 0 0 18	33 0 0 0 33	97 0 0 0 97	49 0 0 0 49	31 0 0 0 31	88 0 0 0 88	137 5 0 0 142	90 1 0 0 91	702 7 0 0 769
Aswan (A)	0	13	1	$\begin{array}{c} 110 \\ 1127 \\ 2847 \\ \ge 48 \\ \text{All speeds} \end{array}$	293 48 0 0 341	76 12 0 0 88	24 1 0 0 25	16 1 0 0	17 0 0 0 17	26 1 0 0 27	7 2 0 0 9	3 0 0 0 3	8 0 0 0 3	5 0 0 0 5	12 1 0 0 13	122 36 0 0 158	604 102 0 0 766
Siwa	44	6	0	1—10 11—27 28—47 ≥48 All speeds	30 4 0 0 34	78 13 0 0 91	95 14 0 0 109	98 17 0 0	75 3 0 0 78	25 0 0 0 25	11 0 0 0	10 0 0 0	16 0 0 0 16	30 0 0 0 30	62 1 0 0 63	74 14 0 0 88	604 66 0 0 670
Dakhla	7	3	0	1-10 1127 2847 ≥48 All speeds	99 28 0 0	60 30 0 0 90	18 5 0 0 23	16 0 0 0	14 0 0 0 14	18 1 0 0 19	33 0 0 0 33	34 0 0 0 0 34	34 0 0 0 34	52 0 0 0 52	68 0 0 0 68	156 44 0 0 200	602 108 0 0 710
Kharga	2	0	3	1-10 11-27 28-47 ≥48 All speeds	134 285 0 0 419	38 44 0 0 82	12 1 0 0	2 0 0 0 2	3 0 0 0 3	3 0 0 0 3	5 0 0 5	6 0 0 6	2 0 0 0 2	3 0 0 0 3	16 2 0 0 18	97 62 0 0 159	321 394 0 0 715
Hurghada	0	0	0	110 1127 2847 ≥ 48 All speeds	18 175 0 0 193	8 2 0 0	1 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0	1 2 0 0 3	0	47 301 2 0 350	124 594 2 0 720
Quecir	3	2	5	1—10 11—27 28—47 ≥48 All speeds	218 167 0 0 385	20 21 0 0 41	0 0 0 0	0 0 0 0	0 0 0 0	1 0 0 0	0 0 0 0	0 0 0. 0	2 0 0 0 2	12 0 0 0 12	0 .0 0	206 28 0 0 234	494 216 0 0 710

UPPER AIR CLIMATOLOGICAL DATA

Table B 1.—MONTHLY MEANS, ABSOLUTE HIGHER AND LOWER VALUES OF ALTITUDE, AIR TEMPERATURE AND DEW POINT AT STANDARD AND SELECTED PRESSURE SURFACES

SEPTEMBER — 1969

Station	Pressure Surface (Millibar)	Alti	tade of Pre	ssure Surfac	ce (gpm)		Tempe	orature (°C)		Dew 1	Point (°C)
8	(Mimbal)	N	Mean	Highest	Lowest	N	Мезд	Highest	Lowest	N	Mean
Morsa Matruh 0000 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	27 26 26 25 25 25 25 23 19 10 4 3 2 1	1010mb. 115 1528 3170 4425 5871 7554 9609 10844 12299 14104 16545 18688 19639 20852 22220 24064	* 1012mb. 132 1565 3221 4472 5921 7612 9681 10922 12403 14225 16676 18740 19700 20896 — — —	** 80 1498 3128 4354 5807 7472 9504 10727 12156 13943 16412 18600 19562 20807 — — —	27 26 26 26 25 25 25 25 25 23 19 10 4 3 2 1	23.0 23.2 19.7 8.8 0.4 9.0 21.7 37.6 46.4 55.0 63.1 58.0 57.5 53.6	24.8 27.5 22.9 11.5 4.4 - 4.7 -18.0 -33.9 -40.7 -48.1 -58.0 -61.9 -59.5 -58.5 -57.3	20.3 21.2 14.0 4.7 5.0 13.1 24.5 40.7 50.1 62.4 67.5 75.3 67.4 60.0 58.6	27 26 26 27 25 24 25 24 23 16 1	18.8 19.4 6.7 -3.7 -10.8 -20.9 -31.3 -47.7 -55.6 -62.1 -63.8
. Неітап 0000 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20 10	28 28 28 28 28 28 28 27 27 27 22 21 14 13 12 10 9 6	995mb. 99 1515 3164 4428 5870 7563 9620 10862 12320 14121 16579 18722 19668 20811 22218 24061 26686	997mb. 117 1544 3208 4476 5913 7620 9705 10955 12425 14238 16678 18790 19724 20864 22247 241 i 8 26772	992mh. 70 1485 3128 4391 5815 7480 9504 10722 12129 13947 16448 18640 19594 20735 22133 23955 26589	28 28 28 28 28 28 27 27 26 22 21 14 13 12 10	23.0 21.1 10.5 1.7 -8.4 -20.5 -36.3 -45.2 -54.5 -62.7 -68.9 -64.8 -61.1 -58.8 -56.4 -52.9 -49.1	25.3 27.3 13.7 6.3 -4.8 -15.4 -32.4 -39.5 -49.1 -59.8 -62.5 -61.9 -59.4 -57.2 -55.3 -50.8 -46.6	21.6	28 ————————————————————————————————————	18.5 3.7 -7.5 -14.6 -25.4 -36.6 -49.4 -56.9 -64.6 -67.8
Aswan 0000 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	30 30 30 30 30 30 29 29 27 27 23 23 18 11 11	** 984mb, 55 1498 3168 4441 5894 7607 9698 10953 12431 14234 16652 18777 19714 20845 2263 24106 26746	**86mb. 80 1517 3197 4457 5929 7663 9770 11037 12525 14334 16743 18890 19808 20940 22326 24161 26791	982mb. 33 1466 3123 4395 5851 7503 9567 10817 12283 14083 16518 18670 19612 20744 22154 24037 26665	30 30 30 30 30 29 29 27 27 23 23 18 11 11 9 7	28.4 	33.0 30.0 15.2 8.0 -1.8 -15.2 -30.3 -39.1 -41.7 -62.0 -66.2 -62.4 -60.0 -57.9 -55.3 -49.9 -46.7	25.5	29 29 29 29 28 28 26 25 — — — — — —	7.1

N = The number of cases the element has been observed during the month.

* - The atmospheric pressure corrected to the elevation of the radiosonde station.

UPPER AIR CLIMATOLOGICAL DATA

Table B 1 (contd.)—MONTHLY MEANS, ABSOLUTE HIGHER AND LOWER VALUES OF ALTITUDE, AIR TEMPERATURE AND DEW POINT AT STANDARD AND SELECTED PRESSURE SURFACES

SEPTEMBER - 1969

		ļ .,.					PN	(0.0)			
Station	Pressure Surface	Aiti	itude of Pre	ssure Surfac	e (gpm)		Tempe	rature (°C)		Dew	Point (°C)
ø2	(Millibar)	N	Mean	Highest	Lowest	N	Mean	Highest	Lowest	N	Mosn
Morsa Matruh 1200 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70	30 30 30 26 25 22 20 17 16 15 12 9 5	1010mb. 118 1538 3179 4442 5878 7570 9623 10864 12319 14135 16628 18776 19764	1013mb. 142 1569 3225 4491 5933 7659 9747 10993 12465 14296 16750 18810 19836	1007mb. 91 1516 3128 4387 5811 7475 9509 10732 12152 13966 16528 18720 19697	30 30 30 26 25 22 20 16 16 15 12 9	27.9 26.7 20.5 9.5 1.5 -8.2 -20.8 -36.0 -45.8 -54.9 -60.5 -64.3 -59.4 -57.4	31.7 31.8 25.3 13.1 6.7 -2.7 -16.4 -27.6 -39.0 -48.0 -57.5 -58.5 -58.0 -56.4	26.0 22.2 15.7 5.0 -2.9 -12.4 -24.4 -40.0 -49.5 -61.9 -63.8 -61.0 -58.6	30 30 26 25 22 20 15 15 12 3	20.4 18.4 3.5 6.0 13.7 24.2 55.2 48.8 57.4 64.5 65.7
	50 40 30 20 10	4	20914	21000 	20880 - - - - -	4 - - - -	55.4 	53.8 	57.5 		-
Helwan 1200 U.T.	Surface 1060 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	27 27 27 27 27 27 27 25 25 24 23 23 18 14 13 11 7 5	995mb. 92 1527 3182 4450 5899 7597 9674 10463 12383 14200 16777 18854 19813 20987 22433 24325 27013	997mb. 113 1559 3217 4484 5997 7700 9789 11016 12547 14338 16869 19900 21150 22592 24478 27170	992mb. 67 1503 3141 4410 5839 7511 9546 10769 12202 14019 16541 18720 19701 20845 22292 24252 26993	27 27 27 27 27 27 25 25 24 23 23 18 14 13	33.0 21.8 11.6 2.9 -7.3 -19.7 -35.4 -61.3 -67.9 -61.2 -57.7 -54.4 -52.3 -48.6 -44.5	38.0 27.3 14.2 9.3 -1.2 -16.2 -29.8 -38.2 -48.5 -58.0 -63.0 -59.5 -51.9 -41.7 -50.5 -46.2 -41.2	29.6	27 26 26 26 26 24 22 22 4 ————————————————	18.3
Aswan 1200 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	30 30 30 29 27 26 26 26 26 25 25 22 16 10 7 6 3	984mb. 46 1510 3185 4464 5920 7637 9737 11001 12490 14312 16748 18887 19823 20968 22386 24267 26999	986mb. 84 1527 3212 4192 5953 7688 9801 11076 12566 14383 16863 19044 19906 21059 22501 24408 27177	982mb, 26 1484 3141 4429 5883 7587 9663 10913 12380 14195 16620 18782 19765 20903 22327 24183 26900	30 29 27 26 26 26 26 25 25 22 10 10 7 6 3	39.9	44.0	35.5	30 29 27 26 26 26 26 27 26 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	8.4 -1.1 -10.3 -17.3 -25.6 -86.7 -49.0 -56.3 -64.6 -70.7

N = The number of cases the element has been observed during the month.

[•] The atmospheric pressure corrected to the elevation of th radiosonde station.

Table B 2.—MEAN AND EXTREME VALUES OF THE FREEZING LEVEL AND THE TROPOPAUSE, THE HIGHEST WIND SPEED IN THE UPPER AIR

SEPTEMBER — 1969

	İ				Fr	eezing l	Level							First	Tropo	p 3-139				High	est v	vind 8	peed
			Mean			Highes	t I		Lowest			Mean			Highes	t		Lowest		н (п	b.)		ote
	Station	Altitudo (gpm)	Pressure (mb.)	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Dew point (°C)	Altitude (gpm)	Pressule (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Direction (000—360)	Speed in Knots
		(N)	(N)	(N)							(N)	(N)	(N)										
. l	M. Matruh (A)	4492 (2 4)	596 (24)	11.8 (23)	5 1 40	54 8	15.8	37 50	6 49	_ 7.8	12684 (9)	1 9 1 (9)	60.4 (9)	1563 0	117	_72.5	10720	2 55	46 .5	10040	283	320	82
1.0 UM	· Helwan	4699 (2 8)	579 (2 8)	15.7 (27)	5300	538	-18.7	3 800	644	 6 .0	14594 (19)	142 (19)	66.2 (19)	17260	90	_72.8	11540	223	—55 .8	1 3 370	170	240	166
	Aswan (A)	4999 (3 0)	561 (30)	-17.8 (29)	5680	516	22.7	4453	59 9	12.1	16175 (2 0)	109 (20)	73.2 (20)	17320	89	—75.2	14530	139	—67 .7	14445	142	26 0	71
		(N)	(N)	(N)							(N)	(N)	(N)										
•	M. Matruh (A)	4643 (24)	584 (24)	-14.6 (24)	5510	526	-21.4	3 8 0 0	644	-12.5	13414 (10)	172 (10)	61.8 (10)	163 00	108	67 .8	11200	236	5 2 . 7	1 3 6 60	166	300	101
1200 U.T.	Helwan	4913 (27)	565 (27)	18.9 (26)	5800	510	-24.3	426 0	611	11.9	14319 (16)	152 (16)	-64.7 (16)	17100	96	70.6	11710	223	55.0	11710	223	295	105
	Aswan (A)	5110 (26)	556 (2 6)	-20.2 (26)	5770	510	2 2.8	4 560	592	16.3	16388 (18)	10 7 (18)	-72.4 (18)	17580	87	—7 8.6	15300	128	68.8	12715	193	207	72

N - The Number of cases the element has been observed during the month.

Table B 8.—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES. MERSA MATRUH (A)—SEPTEMBER 1969

		1			Wind	between ag	pecified ra	nges of di	rection (00	0—360°)		·	<u>, , , , , , , , , , , , , , , , , , , </u>	calm	r of (TN)	wind to)
Station	Prussure Surface (Millibar)	345 014 N (ff) m	015 044 N (ff) m	045 f 074 N (ff) m	075 101 N (ff) m	105 / 134 N (ff) m	135 164 N (ff) m	165 194 N m	N	N	N	285 / 314 N (ff) m	315 344 N (ff) m	Number of ca	Total number observations (7	Moan scalar win speed (knots)
D000 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20 10	4 9 5 11 5 20 6 17 4 21 1 24 1 21 1 30 1 29 0 — 0 — 0 — 0 — 0 — —	4 10 8 10 7 16 1 33 2 8 2 16 2 18 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 —	0	0 - 2 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	1 2 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	0	1 6 0 — 0 0 — 0 0 — 0 1 12 4 30 0 — 2 14 18 2 12 0 — — — — — — — — — — — — — — — — — —	3 5 0 - 2 12 0 - 3 10 4 21 5 29 6 28 7 36 7 34 2 30 0 - 1 12 - - - -	1 6 0	2 10 3 13 7 15 6 14 9 21 7 27 7 28 5 29 4 47 2 54 3 35 1 18 0 —	3	8 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0	27 26 26 25 25 25 24 22 18 14 6 3	6 10 16 20 19 22 25 32 37 42 36 22 11 12
1200 U.T.	Surface 1006 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20 10	9 10 12 12 3 13 4 26 2 24 1 20 1 13 0	9 10 6 12 3 18 3 12 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 —	1 13 13 13 1 24 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — —	0	_ _ .	- 1	0	0	0	0	2 15 0	9 13 10 16 11 15 8 18 7 27 3 23 1 15 0	0 0 0 0 0 0 0 0 0 0 0 0 0	30 30 29 26 24 20 19 14 12 11 9 7 4 3 2	12 13 15 19 22 22 25 26 33 36 38 19 6 10 13

N = The number of cases the element has been observed during the month.

TN = The total number of cases the wind has been observed for all directions during the month.

Table B 8 (contd.)—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES. HELWAN — SEPTEMBER 1969

	!				Wind 1	between sp	ecified ran	ges of dir	ection (000)— 360°)				calm	(TN) wind ts)
Station	Prussure Surface (Millibar)	345 / 014	015 / 044	045 / 074	075 / 104	105 / 1 3 5	135 / 164	165 / 194	195 / 224	225 / 254	255 / 284	285 / 314	315 / 344	of age	9 1.5
St.	(,	N (ff)	N (ff)	N (ff) m	N (ff)	N (ff)	N (ff)	N m	N (ff)	N (ff)	N (ff)	N (ff)	N ff)	Number wir	Total numb observations Mean scalar
0000 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20 10	9 6 -4 23 3 25 0 2 14 1 20 0 0 0	10 9 4 22 1 24 1 23 2 10 0	5 7 0	0	0	0	0	0	0	0	1 3	2 4 -9 22 6 19 2 32 0 — 0 — 0 — 0 — 0 — - — - — - — - — - —	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	28
1200 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	5 12 7 14 5 29 4 20 0 1 15 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 — 1 20 1 6 2 10 1 13 0 — 0 — 0 — 0 —	0 1 12 0 - 0 - 0 - 0 - 0 0 - 1 16 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	0	0 0 1 13 0	0 1 6 3 28 3 32 3 20 3 27 0 0 1 41 0 0 0	0	0	0 — 2 14 2 12 2 23 9 17 8 28 6 41 6 48 3 32 3 42 1 20 0 — 0 — 0 — 0 — 0 —	5 9 2 12 7 20 6 22 3 26 3 29 2 43 2 76 1 60 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — — — —	10 9 9 9 20 2 33 3 25 1 11 0 - 0 - 0 - 0 - 0 - 0 - 0 - -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27 11

N = The number of cases the wind has been observed for the range of direction during the month.

TN = The total number of cases the wind has been observed for all directions during the month.

Table B 3 (contd.)—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES.

ASWAN (A) - SEPTEMBER 1969

				-	Wind	between sp	pecified ran	nges of dir	ection (00	0360)°	······································			calm	er of (TN) wind
Station	Prussure Surface (Millibar)	345 / 014	015 / 044	045 / 074	075 / 104	105 / 135	135 / 164	105 / 194	195 / 224	225 / 254	255 / 284	285 / 314	315 / 344	₩ #	1 4 1.0
		N (ff)	N (ff)	N (iff)	N (ff)	N (ff)	N (ff)	N (ff)	N (ff)	N (ff)	N (ff)	N (ff)	N (ff)	Number win	Total numb observations Mean speed apeed (kn
0000 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20 10	14 8 	4 8 9 14 1 22 0 - 3 6 2 12 0 - 0 0 - 0 0 - 0 1 22 0 - 0 - 0 - 0 0 -	1 3 - 10 3 16 3 14 1 20 1 8 0 - 0 - 0 - 0 2 12 2 14 0 - 2 34 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	1 7 3 11 4 8 2 12 2 6 0 — 0 — 0 — 0 — 0 — 0 — 6 13 5 18 8 20 6 28 3 27 2 45	0 — 5 11 1 7 5 8 1 6 0 — 0 — 0 — 1 21 3 15 4 14 4 13 1 15 0 — 0 — 0 — 0 — - —	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0	0	0	0	1 8 3 4 1 8 1 5 1 16 0 — 0 — 1 31 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 —	9 8 -4 12 2 6 0 -7 1 4 0 -0 0 -0 1 20 0 -0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30
1200 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	12 7 - 4 12 0 - 3 2 8 1 10 - 0 -	1	0	1 12	1 3 7 7 2 13 3 10 1 5 1 20 0 — 0 0 — 1 14 1 17 1 15 2 35 1 15 2 30 0 — — — — — — — — — — — — — — — — —	2 6 -2 7 7 2 2 1 7 1 7 0 0 0 -	2 4	0	0 — 2 13 7 20 4 14 8 12 6 13 8 21 14 31 11 31 2 8 0 — 0 — 0 — 0 — 0 —	2 4 3 6 5 15 2 8 1 6 2 12 4 19 2 18 2 34 1 22 6 12 0 — 0 — 0 — 0 — 0 —	1 12	6 7	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 6

N - The number of cases the wind has been observed for the range of direction during the month.

TN = The total number of cases the wind hasbeen observed for all directions during the month.

REVIEW OF AGRO-METEOROLOGICAL STATIONS

MERSA MATRUH - SEPTEMBER 1969

This month was slightly warmer than normal and rainless. The daily maximum air temperatures were above normal most of the month. Two heat waves occurred on the 16th and during the period (19th -23rd). The first heat wave yielded the highest maximum air temperature for the month (33.1°C) and the lowest relative humidity (27 %).

The mean daily actual duration of bright sunshine was 0.3 hour less than the corresponding value of El Kasr in September 1968.

TAHRIR - SEPTEMBER 1969

This month was warmer than last September. The daily maximum air temperatures were above normal most of the month. Four heat waves were experienced during the periods (3rd - 4th), (7th - 8th), (17th - 20th) and (22rd - 26th). The third heat wave yielded the highest maximum air temperature for the month (36.8°C) on the 17th. The last heat wave was associated with the lowest value of relative humidity (33%) on the 23rd.

The extreme maximum soil temperatures were slightly higher (0.2°C) than the corresponding value of last September at both 2 & 20 cm. depths, and lower at all other depths with small differences ranging between 1.0, 0.1°C.

The extreme minimum soil temperatures were higher than the corresponding values of last September at all depths with differences ranging between 3.4°C at 2 cm. and 0.9°C at 100 cm.

The mean daily Pan evaporation was 0.49 mm. more than the corresponding value of September 1968. The mean daily actual duration of bright sunshine was slightly more (0.1 hour) than September 1968.

BAHTIM - SEPTEMBER 1969

This month was warmer than last September. The daily maximum air temperatures were above average most of the month. Four heat waves were experienced during the periods (3rd - 4th), (7th - 8th), (17th - 20th) a nd (22rd - 27th). The third heat wave yielded the highest maximum air temperature (37.5°C) and the lowest value of relative humidity (22%) on the 17th.

The extreme maximum soil temperatures were lower than the corresponding values of last September at 2,5 cm. depths by 1.9°C, 2.8°C respectively. At 10 cm. depth its value was the same as last September, and at deeper depths between 20,100 cm. its values were slightly higher (0.4° to 0.5°C). The extreme minimum soil temperatures were higher than last September at all depths, and the differences ranged between 3.3°C at 10 cm. and 0.6°C at 100 cm.

The mean daily Pan evaporation was 0.40 mm. more than the corresponding value of September 1968. The mean daily actual duration of bright sunshine was 0.4 hour less than September 1968.

KHARGA — SEPTEMBER 1969

This month was warmer than normal. The daily maximum air temperatures were above normal most of the month. The month was characterized by five heat waves during the periods (1 st - 6th), (8th - 9th), (13th - 14th), (17th - 20th) and (23rd - 30th) The last heat wave was the most excessive, and yielded the highest maximum air temper ature for the month (45.5°C) and the lowest value of relative humidity (10%) on the 25th

The extreme maximum soil temperatures were higher than the corresponding values of last September at all depths except at 100 cm where it was slightly lower (0.2°C), the differences ranged between 1.7°C at 2 cm. and 0.3°C at 50 cm. The extreme minimum soil temperatures were higher than last September at all depths with differences ranging between 3.6°C at 5 cm. and 0.7°C at 100 cm.

The mean daily Pan evaporation was 2.33 mm. more than the corresponding value of September 1968. The mean daily actual duration of bright sunshine was 0.3 hour less than September 1968.

Table C 1.—AIR TEMPERATURE AT 1½ METRES ABOVE GROUND SEPTEMBER — 1969

Station	F	Air Tem	peratur	e (°C)	J	Mean Duration in hours of daily air temperature above the following values										
Station	Mean Max.	Mean Min.	Mean of the day	Night time mean	Day time mean	5°C	0°C	5°C	10°C	15°C	20°C	25°C	30°C	3 5°C	0.0 0.0 0.0	45°C
Mersa Matruh	29.1	20.2	24.8	22.6	26.9	24.0	24.0	24.0	24.0	24.0	22.2	11.3	0.4	0.0	0.0	0.0
Fahrir	34.0	19.2	25.6	21.9	29.4	24.0	24.0	24.0	24.0	24.0	21.3	11.5	5.8	0.0	0.0	0.0
Bahtim	33.9	17.6	25.2	21.1	29.3	24 .0	24.0	24.0	24.0	24.0	19.3	11.4	6.1	0.1	0.0	0.0
Kharga	3 9.7	25.1	32.4	29.3	35.5	24.0	24.0	24.0	24.0	24.0	24.0	22.5	15.1	7.4	1.5	0.0

Table C 2.—EXTREME VALUES OF AIR TEMPERATURE AT 1½ METRES ABOVE GROUND, ABSOLUTE MINIMUM AIR TEMPERATURE AT 5cms ABOVE GROUND OVER DIFFERENT FIELDS.

SEPTEMBER -1969

	Max.	Гемр. at	1½ metre	es (°C)	Min.	Temp. at	1½ metres	s (°C)	Min, T	in, Temp. at 5 cms. above (°C)				
Station	High	nest	Lov	west	Hig	hest	Low	vest	Dry	soil	Gr	88		
	Value	Date	Value	Date	Value	Date	Value	Date	Value	Date	Value	Value		
Morsa Matruh	33.1	16	27.2	27.30	23.8	25	16.4	22	13.5	22	_	_		
Tahrir	36.8	17	32.1	30	21.1	8	16.7	22	15.0	22	_	_		
Bahtim	37.5	17	31.6	10	20.8	2	15.1	13	13.0	13	_			
Kharga	45.4	25	34.4	10	30.1	27	21.3	4	18.6	23	<u> </u>			

Table C 3.—(SOLAR + SKY) RADIATION, DURATION OF BRIGHT SUNSHINE, RELATIVE HUMIDITY, VAPOUR PRESSURE AT 1½ METRES ABOVE GROUND, EVAPORATION & RAINFALL.

SEPTEMBER - 1969

	liation		on of Br ine (ho		Rel	ative	Humi	dity		Vapo	our pr	essure	(mm	s)		oration ms)	F	ainfall (mms)	
STATION	(Solar + Sky) Radii gm. cal/cm²	Total Actual monthly	Total Possibly monthly	%	Mean of day	1200 U.T.	Lowest	Date	Mean of day	1200 U.T.	Highest	Date	Lowest	Date	Piche	Pan class A	Total Amount Monthly	Max. Fall in one day	Date
Mersa Matruh] _	313.8	371.1	85	72	61	27	16	16.5	17.0	21.6	17	9.0	16	6.8	-	0.0	0.0	
Tahrir	561.3	315.3	370.6	85	72	41	33	23	17.1	15 .6	21.9	8	11.6	12	7.5	8.82	0.0	0.0	
Bahtim	582. 6	310.1	370.6	84	69	38	22	17	15.7	14.3	20.7	2	11.2	17	8.1	8.53	0.0	0.0	-
Kharga	495.7	329.3	368.9	89	29	19	10	2 5	10.0	9.7	17.6	1	5.3	2	26.2	20.93	0.0	0.0	
	l						i l	!	i	I	ŧ [, ,			1			

Table C 4.—EXTREME SOIL TEMPERATURE AT DIFFERENT DEPTHS (oms) IN DIFFERENT FIELDS

SEPTEMBER — 1969

STATION	Highest (H) Lowest (L)	Extreme soil temperature (°C) in dry field at different depths (cms.)												•	re (°C) in grass								
	Hig Lo	2	5	10	20	50	100	200	300	2	5	10	20	50	100	200	300						
Mersa Matruh	H L	43.5 23.1	38.2 22.2	34.1 23.5	33.8 26.1	28.7 27.3	27.3 26.8	$25.3 \\ 24.7$			_			=		_	_						
Tahrir	H L	51.4 25.9	45.2 24.6	40.0 25.2	35.6 28.8	31.6 29.8	30.6 29.8	29.2 28.9	28.3 28.2	_			_	_	_	_	-						
Bahtim	H L	$50.6 \\ 26.4$	43.9 26.4	$\frac{38.8}{28.4}$	34 7 31.0	32.1 30.7	$\frac{30.7}{30.2}$	28.1 27.5	26.4 25.9	_	_	_	_	_	_	_	_						
Kharga	H L	53.7 23.5	47.5 26.7	41.6 30.0	37.2 32.6	35.0 33.6	33.4 33.1	31.4 31.0	30.3 29.7	_	-	_	_ =	<u>-</u>	_	=	_						

Table C 5 .- SURFACE WIND

SEPTEMBER — 1969

S		Speed 1½ m	m/ses		Max. Gust. (knots) at 10 metres							
Station	Mean of the day	Night time mean	day time mean	≥10 knots	≥15 knots	≥20 knots	≥25 knots	≥30 knots	≥35 knots	≥40 knots	value	Date
Morsa Matruh	3.5	2.5	4.5	29	10	5	0	0	0	0	25	2 5
Tahrir	2.1	1.2	3.0	3 0	8	0	0	0	0	0	23	21
Bahtim	2.0	1.1	3.0	28	6	0	0	0	0	0	23	11
Kharga	4.5	3.7	5.4	29	2 9	21	6	o	0	0	37	20

PRINTED IN ARAB REPUBLIC OF EGYPT
BY THE GENERAL ORGANIZATION
FOR GOVT. PRINTING OFFICES. CAIRO
First Under-Secretary of State
ALY SULTAN ALY
Chairman of the Board of Directors

903-1971-150

MONTHLY WEATHER REPORT

VOLUME 12 NUMBER 10

OCTOBER, 1969

ATMOSPHERIC SCIENCE LIBRARY

SEP 6 1972

N.O.A.A. U. S. Dept. of Commerce

U.D.C. 551, 506.1 (62)

THE EGYPTIAN METEOROLOGICAL AUTHORITY
CAIRO

PUBLICATIONS OF THE METEOROLOGICAL AUTHORITY OF THE ARAB REPUBLIC OF EGYPT—CAIRO

In fulfilment of its duties, the Egyptian Meteorological Authority issues serveral reports and publications on weather, climate and agro-meteorology. The principal publications are described on this page.

Orders for publications should be addressed to :

"Chairman of the Board of Directors, Meteorological Authority, Kubri-el-Qubbeh - CAIRO".

THE DAILY WEATHER REPORT

This report is issued daily by the Meteorological Authority since the year 1901. It includes surface and upper air observations carried out by the relevant networks of the Republic at the principal hours of observations.

As from January 1968 this report was revised to include a condensed representative selection of surface and upper air observations besides the 1200 U.T. surface & 500 mb charts.

As from 1st January 1972, the Daily Weather Report will not be issued or distributed because it does not serve no longer any good purpose as it used to be in the past. The Meteorological Authority is ready to supply the recipients of the Report with any information used to be included in it, if they so desire.

THE MONTHLY WEATHER REPORT

First issued in 1909, the Monthly Weather Report served to give a brief summary of the weather conditions that prevailed over Egypt during the month, with a table showing the mean values for few meteorological elements and their deviations from the normal values. From 1954 to 1957 this report was in a rapid state of development and extension resulting into a voluminous report on January 1958 giving surface, upper air, and agro-meteorological data for Egypt.

As from January 1964, the Monthly Weather Report was pressed to give climatological data for a representative selection of synoptic stations.

THE AGRO-METEOROLOGICAL ABRIDGED MONTHLY REPORT

Gives a review of weather experienced in the agro-meteorological stations of Egypt as well as monthly values of certain elements.

THE ANNUAL REPORT

This report gives annual values and statistics for the various meteorological elements, together with a summary of the weather conditions that prevailed during all months of the year.

CLIMATOLOGICAL NORMALS FOR EGYPT

A voluminous edition was issued in March 1968 which brings normals and mean values up till 1960.

METEOROLOGICAL RESEARCH BULLETIN

First issued in January 1969 on a bi-annual basis. It includes research works carried out by members of staff of "The Meteorological Institute for Research and Training" and the Operational Divisions of the Meteorological Authority.

TECHNICAL NOTES

As from October 1970, the Meteorological Authority started to issue a new series of publications in the form of Technical Notes (non periodical) on subjects related to studies and applications of meteorology in different fields for the benefit of personnel working in these fields.

MONTHLY WEATHER REPORT

VOLUME 12 NUMBER 10

OCTOBER, 1969

U.D.C. 551, 508.1 (62)

CONTENTS

		PAGE
	General Summary of Weather Conditions	1-2
	SURFACE DATA	
Table	A1.—Monthly values of the Atmospheric Pressure, Air Temperature, Relative Humidity, Bright Sunshine Duration and Piche Evaporation	3
••	A2.—Maximum and Minimum Air Temperatures	4
*	A3.—Sky Cover and Rainfall	5
,,	A4.—Number of Days of Occurrence of Miscellaneous Weather Phenomena	6
**	A5.—Number in Hours of Occurrences of Concurrent Surface Wind Speed and Direction Recorded Within Specified Ranges	7,8
	UPPER AIR DATA	
[able	B1.—Monthly Means and Monthly Absolute Higher & Lower Values of Altitude, air Temperature & Dew point at Standard and Selected Pressure Surfaces	9.10
**	B2.—Mean and Extreme values of The Freezing Level and The Tropopause; The Highest Wind Speed in The Upper Air	11
**	B3.—Number of Occurreneces of Wind Direction Within Specified Ranges and The Mean Scalar Wind Speed at the Standard and Selected Pressure Surfaces	12-14
	AGRO-METEOROLOGICAL DATA	
[able	Reviews of Agro-meteorological stations	15,16 17
**	C2.—Absolute Values, of Air Temperature at 1½ Metres Above Ground, Absolute Minim um Air Temperature at 5 Cms Above Ground Over Different Fields	17
••	C3.—(Solar + Sky) Radiation, Duration of Bright Sunshine, Relative Humidity and Vapour Pressure at 1½ Metres Above Ground, Evaporation and Rainfall	17
••	C4.—Extreme Soil Temperature at Different Depths in Different Fields	18
,,	C5.—Surface wind	18

Note: For explanatory notes on tables please refer to Volume 12, Number 1 (January 1969).

GENERAL SUMMARY OF WEATHER CONDITIONS

OCTOBER 1969

Changeable, characterized with three transitory disturbances.

Instability heavy rain between the 7th & 10th with local floods over scattered localities.

GENERAL DESCRIPTION OF WEATHER

The prevailing weather during this month was generally mild in the northern and middle parts, rather hot in the southern parts. Three variant heat waves were experienced round the periods (1st - 7th), (18th - 19th) and (26th - 28th) and were mainly pronounced in land areas.

The month was characterized by two distinct rainy periods: (3rd - 10th) and (17th - 26th), during which rain of variant amounts fell over many parts of the Republic, and was associated at times with scattered lightning and thunderstorms. Rain was occasionally heavy causing floods between the 7th. and 10th over scattered parts in Lower Egypt area, Giza, Beni Suef and Aswan provinces.

PRESSURE DISTRIBUTION

The oustanding pressure systems over the synoptic surface charts during this month were:

- —Deep low pressure systems over North Europe.
- -The Atlantic anticyclone and its east-ward extension.
- -Local anticyclones over Europe and their extensions over the Mediterranean Sea.
- —Desert secondaries moving south of the coast of North Africa.

-Monsoon low pressure over Sudan and Arabia.

During this month three desert secondaries were distinguished, they originated near Tunisia on the 17th, 22nd and 29th respectively and proceeded eastwards. The first and second secondaries passed through north of Egypt on the 19th and 28th respectively. The last desert secondary reached the gulf of Serte on the 30th and then moved northeastwards to Crete on the 31st.

The Sudan trough showed three northward elongations during the periods (2nd - 7th) & (11th - 13th) and (25th - 27th). These elongations associated the transit of deep low pressure troughs north of the Black and Caspian Seas area.

The barometric pressure over Egypt. was influenced by the above mentioned transits of desert secondaries and northward elongations of the Sudan trough, and the subsequent eastward extension of high pressure over the Mediterranean. Accordingly it showed consecutive oscillations reaching minima round the 7th, 13th, 19th, 25th, 28th and 31st respectively.

The most outstanding pressure systems over the synoptic upper air charts during the month were:

—The deep upper low pressure systems over North Atlantic and North Eurasia.

—Secondary upper troughs or lows through the Mediterranean and its vicinities traversing East Mediterranean on the 2nd, 11th, 15th and 21st, the second of which was the most remarkable.

-Upper high pressure belt over the subtropical latitudes.

SURFACE WIND

Light to moderate N/NW winds prevailed most days of this month in general. They became fresh to strong during few days over scattered parts mainly in the Western Desert and Red Sea districts.

TEMPERATURE

Maximum temperature was oscillatory and its variability was slight in the northern parts, moderate in the middle parts and large in the southern parts. Maximum air temperature values ranged most days of the month between 24° &28°C in the northern parts, between 26°, 34°C in the middle parts, between 32°, 42°C in the southern parts.

The highest maximum air temperature for the month was 44.2 °C reported at Aswan on the 1st.

Cairo, March 1972

Minimum air temperature was above normal in general and its variability was slight to moderate. Its values ranged generally between 15° & 21°C in the northern and middle parts and between 19° & 25°C in the southern parts.

The absolute minimum air temperature for the month was 9.4°C reported at Farafra on the 23rd & 24th.

PRECIPITATION

Two rainy periods were distinguished during this month, the first between the 3rd and 10th, and the second between the 17th and 23th. During these two periods rain of variant intensity fell over most of the districts, and was associated at times with scattered thanderstorms and lightning. Rain was heavy over scattered parts between the 7th & 10th and on the 20th & 21st.

It is worthy to mention that accumulated heavy rain over the Eastern Desert broke up in destructive floods over scattered provinces along the Nile and in the eastern part of Delta between the 7th & 10th.

The highest daily rainfall was 45.4 mm. over Ras El Hikma on the 8th.

The highest monthly rainfall was 107.9 mm. over Ras El Hikma.

Chairman (M. F. TAHA)

Board of Directors

Table A 1.—MONTHLY VALUES OF THE ATMOSPHERIC PRESSURE, AIR TEMPERATURE RELATIVE HUMIDITY, BRIGHT SUNSHINE DURATION & PICHE EVAPORATION

OCTOBER — 1969

		pheric				Air '	l'emperati	ıre °C				Rel	lative	Bri	ght Sunsi	nine	mms.
AD ADVON		e (mbs) S.L.	Maxi	mu <u>m</u>	Min	i m um		Dry	Bulb	Wet	Bulb	Humi	dity %	Dur	ation (Ho	urs)	ration en
STATION	Mean	D.F. Normal or Average	(A) Mean	D.F. Normal or Average	(B) Mean	D.F. Normal or Average	A+B 2	Mean	D.F. Normal or Average	Mean	D.F. Normal or Average	Mean	D.F. Normal or Average	Total Actual	Total Possible	%	Piche Evaporation Mean
Sallum	1012.1 1014.7 1014.2 1013.1	-4.1 -1.7 -1.6 -2.0	26.2 26.0 27.1 27.1	-1.2 -1.0 -0.7 -0.2 -	18.7 17.9 18.5 21.7	+0.8 +1.1 +0.8 -0.1 -	22.4 22.0 22.8 24.4	22.4 21.8 22.5 24.0	-0.2 +0.1 -0.2 -0.1 -	18.6 18.7 19.1 20.3	+0.4 +0.9 +0.3 0.0	68 73 71 70 —	+4 +7 +3 +1 -	249.8 (260.8) 265.7	353.6 (342.8) 354.2 —	71 (76) 75 —	5.6 6.3 5.8 8.4 —
Tanta	1013.7	1.7	29.8	0.3	17.2	+1.7	23.5	22.5	+0.4	18.7	+0.7	68	+3	286.2	354.5	81	4.4
Cairo (A)	1013.2	-2 .0	29.8	_0.1	18.5	+0.7	24.2	23.5	0.0	18.6	+0.4	60	+2	_	_	_	11.3
Fayoum (A) Minya (A) Assyout (A) Luxor (A) Aswan (A)	1012.5 1011.4 1010.4 999.6	-1.7 -2.2 -1.4 -1.6	31.5 32.0 32.9 36.4 37.2	+0.1 +0.6 +1.8 +1.3 +0.3	17.7 17.1 18.6 19.2 21.6	+0.4 +1.5 +0.6 +1.6 +2.2	24.6 24.6 25.8 27.8 29.4	24.3 24.2 25.3 27.6 29.0	+0.2 +1.0 +0.9 +2.7 +0.8	18.6 17.8 17.2 18.7 17.2	+0.6 +0.3 -0.1 +0.8 +1.4	55 50 40 38 25	+3 -5 -6 -1 +5	301.1 — — —	356.6 — — —	84 —	5.8 10.8 15.4 9.6 22.4
Siwa	1013.1 1012.9 1013.8 1012.6 1011.3	-2.9 -1.6 -2.4 -0.3 -1.6	31.2 32.2 31.9 33.8 34.7	-0.4 +1.1 +0.6 +1.6 +0.6	17.3 18.1 17.5 17.9 20.4	+2.4 +2.1 +2.1 +0.8 +2.0	24.2 25.2 24.7 25.8 27.6	24.0 24.5 24.1 25.7 27.5	+0.9 +0.7 +0.9 +1.0 +1.8	16.8 17.3 16.3 16.4 16.5	+0.8 +0.7 +1.5 +1.3 +0.3	45 46 40 34 31	+1 -3 +4 +4 -2	275.5 — — — — (284.5)	355.8 ———————————————————————————————————	78 — — (88)	9.5 8.1 16.7 16.9 19.1
Tor	1010.4 1010.5	-1.7 -1.7	30.3 30.0	 +1.5 0.1	21.5 23.4	- +1.7 +0.6	25.9 26.7	26.0 26.9	- +1.1 +1.0		 +1.3 +1.4	59 57	 +3 +4	-	- -	_	13.5 14.1

Note: actual number of sunshine records at Alexandria was 30 days and at Kharga was 28 days.

ر دد

Table A 2.—MAXIMUM AND MINIMUM AIR TEMPERATURE OCTOBER — 1969

•			Ma	kimum Te	mperatu	re °C				Grass Ten				Minin	mum Temp	perature) 		
Station	Highest	Date	Lowest	Date	No	. of Da	ys with	Max-T	emp.	Mean	From Normal	Highest	Date	Lowest	Date	N		ays wi Temp.	th
	ін	А	٤	Ω	> 25	> 30	> 35	> 40	> 45	W	D. Fron	High	Ω	Io	H	<10	<5	<0	<-5
Sallum	34.2 29.6 29.3 29.5 —	2 2 27 1 —	23.4 22.6 22.2 24.8	24 22 22 22 29 	21 23 26 29 —	1 0 0 0	0 0 0 0 -	0 0 0 0 -	0000	18.6 15.8 17.6 20.4		21.9 21.7 23.0 25.9	2,3,27 10 8 7	15.4 13.5 14.3 16.6	30 23,24,31 31 19 —	0 0 0	0 0 0 0 -	0 0 0 -	0 0 0 -
Tanta	33 .6	6	25.4	22	31	19	0	0	0	_	_	20.7	7	13.5	7	0	0	0	0
Cairo (A)	34.8	6	25 .6	23,29	31	15	0	0	0		_	21.1	8	15.1	24,30	0	0	0	0
Fayoum	38.1 38.8 39.3 42.4 44.2	27 27 27 1 1	26.1 26.3 26.5 30.0 29.5	31 31 30 30 30	31 31 31 31 31	22 23 22 30 31	3 4 11 21 25	0 0 0 3 7	0 0 0 0	16.0 14.5 16.4 16.9		22.0 21.4 22.0 24.8 26.8	11 7 7 1 2	12.1 12.6 13.7 13.4 14.5	30 23 31 24 31	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0
Siwa	36.3 37.9 39.0 40.8 39.9	2 27 27 5 28	25.0 26.6 25.7 26.8 28.3	24 30 30 30 30 30	30 31 31 31 31	20 23 23 26 29	6 3 6 11 13	0 0 0 2 0	0 0 0 0	14.5 16.6 16.5 — 18.7		23.2 22.3 21.7 23.8 26.1	27 7 5	10.9 12.0 9.4 9.7 12.4	23 22 23,24 23 23,31	0 0 2 1 0	0 0 0 0	0 0 0 0	0 0 0 0
Tor	33.4 33.0		27.5 27.0		31 31	18 16	_ 0 0	_ 0 0	- 0 0	 20.6		26.4 25.4	- 1 5	16.8 20.4	19 31	- 0 0	0 0	0 0	0 0

Table A 3.—SKY COVER AND RAINFALL
OCTOBER — 1969

		Mae	n Sky Co	ver Oct.					Rai	nfall mms	ı.					
STATION	00	06	12	18	Daily	Total	D. From		x. Fall one day	N	Number o	f Days	with An	aount o	f Rain	
	U.T.	U.T.	U.T.	U.T.	Mean	Amount	Normal	Amouut	Date	<0.1	≥0.1	≥1.0	≥5.0	≥10	≥25	≥50
Sallum	4.5 3.0 3.8 —	4.7 4.5 4.3 3.1	4.8 4.8 5.1 2.8	3.9 2.8 3.4 —	4.4 3.8 4.1	38.8 89.8 24.3 20.7	+21.7 +73.6 +15.1 +13.7	18.6 28.1 12.5 12.5	8 19 21 19 —	0 2 2 0 —	12 11 5 4	6 7 3 3 —	2 4 2 2 —	1 3 1 1 —	0 2 0 0 -	0 0 0 0 -
Tenta	0.6	1.7	3.2	0.7	1.8	1.0	_ 3.4	0.4	19	1	3	0	0	0	0	0
Cairo (A)	1.5	2.5	3.4	1.8	2.4	14.4	+13.6	13.8	9	0	4	1	1	1	0	0
Fayoum (A) Minya (A) Assyout (A) Luxor (A) Aswan (A)	0.1 0.7 1.0 0.9	1.8 1.8 1.1 1.2 1.3	3.0 2.1 1.5 1.5 1.8	1.9 1.1 0.8 1.6 0.9	$ \begin{array}{c} $	Tr. 0.0 Tr. Tr. 0.0	0.9 0.6 0.0 0.1 Tr.	Tr. 0.0 Tr. Tr. 0.0	6 4,5,19 5,8 	1 0 3 2 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
Siwa	2.6 1.4 1.6 0.7	2.0 1.7 1.0 0.7 1.1	4.6 2.5 1.9 0.6 1.1	1.8 1.6 1.3 0.6 0.7	2.5 1.8 — 0.9 0.9	0.9 Tr. 0.0 Tr.	+0.6 0.3 1.0 0.0 Tr.	0.9 Tr. 0.0 Tr. 0.0	5,18,25 - 5	4 3 0 1 0	1 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
Tor	1.3 1.4	1.4 2.3	2.6 2.1	2.2 2.1	- 1.9 1.9	3.2 15.8	$\begin{array}{r} - \\ + 3.1 \\ + 15.3 \end{array}$	- 1.8 8.3	- ₇ 7	- 1 1				_ 0 0	_ 0 0	- 0 0

Table A 4.—DAYS OF OCCURRENCE OF MISCELLANEOUS WEATHER PHENOMENA

OCTOBER - 1969

		Precip	itation			stornı	10c0 metros	Vis Ictres	Vis letres	ze Vis letres	t or Sandrising	ndstorm Metros		Clear	Cloudy
Station	Rain	Sno₩	Ice Pellets	Hail	Frost	Thunderstorm	Mist Vis 2 1	Fog Vis	Haze Vis ≥ 1000 Metres	Thick Haze Vis	Dust or Sa Vis ≥1000	Dust or Sandstorm Vis <1000 Metres	Gale	Sky	Sky
8allulm	12 11 5 4	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0 	2 3 2 0 —	0 0 2 0 -	0 0 4 0 —	0 0 0 0	0 0 0 0 -	0 3 1 0 —	0 0 0 0 -	0 0 0 0 	3 5 2 8 —	9 0 0 2
Tanta	3	0	0	0	0	0	0	1	0	o	0	0	0	18	0
Cairo (A)	4	0	0	1	0	2	7	0	4	0	2	0	0	14	0
Fayoum	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 1 1 0	0 1 0 0	0 0 0 0	0 0 0 1 0	0 0 0 0	0 0 1 1 7	0 0 0 1 1	0 0 0 0 1	22 26 24 23	 0 0 0
Siwa	1 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	1 0 0 0	0 0 0 0	0 0 0 0 0	0 0 1 1 0	0 0 0 0 0	2 2 1 2 2	0 0 0 0 0	0 0 0 0	12 16 - 26 26	0 0 - 0 0
Tor	3 3	0 0	- 0	 0 0	- 0 0	 3 3	- 0 0	- 0 0	0 0	0 0	- 3 0	- 0 0	- 0 0	19 20	1 1

6 |

Table A 5.—NUMBER IN HOURS OF OCCURENCES OF CONCURRENT SURFACE WIND SPEED AND DIRECTION RECORDED WITHIN SPECIFIED RANGES

OCTOBER — 1969

	urs)	ours)	(hours)			Nun	iber i	n houi			rence: lirecti				ing f	rom	the
Station	calm (bours)	Variable (hours)	Unrecorded (hours)	Wind speed in knots	318 / 014	5 01: 1 044	1	1	105 / 134	13/ ₁ / 164	1	,	225 / 254	1	28.	1	ie
Ballum	12	1	0	1-10 11-27 28-47 ≥48 All speeds	38 3 0 0 41	66 0 0 72	114 30 0 0 144	70 21 0 0 91	68 6 0 0 74	31 0 0 0 31	12 0 0 0 12	11 1 0 0 12	18 4 0 0 22	31 9 0 0 49	59 40 0 0	77 16 0 0 93	
Mersa Matruh . (A)	14	0	0	1-10 1-27 28-47 ≥48 All speeds	83 32 0 0	67 51 0 0 118	37 21 0 0 58	41 47 0 0 89	49 20 0 0 69	32 1 0 0 33	36 0 0 0 36	49 3 0 0 52	40 5 0 0 45	34 0 0 0 34	42 16 0 0 68	10 4 0 0	520 210 0 0 730
Alexandria (Λ)	0	0	0	1—10 11—27 28—47 ≥18 All speeds	47 23 0 0 70	0 16 0 0 76	37 8 0 0 45	38 1 0 0 39	34 0 0 0 34	5 0 0 45	0 0	14 2 0 0 16	7 1 0 0 8	38 2 0 0 40	10 0 0	178 66 0 0	615 129 0 0 744
Port Said (A)	1	0	0	1—10 11—27 28—47 ≥48 All speeds	117 38 0 0 155	63 41 0 0 104	37 32 0 0 69	14 4 0 0 18	8 2 0 0 10	7 3 0 0 1•	0 0	8 0 0	12 0 0	16 0 0	10 0 0	76 25 0 0	552 191 0 0 743
Tanta	125	0	0	1—10 11—27 28—47 ≥48 All speeds	112 2 0 0 116	5° 5 0 0 64	21 0 0 0 21	3 0 0 0 3	2 0 0 0 2	0 0	0 0	0 0 0	0 0	2 0 0	2 0 0	33 6 0 0 39	601 18 0 0 619
Cairo (A)	9 5	3	3	1 -10 11-27 28-47 ≥48 All spreds	$\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$	107 61 0 0 168	37 0 0	63 19 0 0 82	6 6 0 0 0 12	3 2 0 0 5	1 0 0	3 0 0	8 0 0	5 0 0	2 0 0	46 7 0 0 53	463 180 0 0 643
Fayoum	12	2	0	11—27 28—47 ≥48	274 9 0 0 0 274 9	8 0 0	0 0	0	0 0	0	1 0 0	2 0	5 0 0	0 0 0	0 0	0 0	714 16 0 0 730
Minya(A)	67	1	0	11—27 28—47 ≥48	373 67 0 0 445	0	11 0 0	0 0	0	0 0 0	2 0 0	0	2 0 0	4 0 0	1 0 0	0 0	586 90 0 0 616

Table A 5 (contd.)—NUMBER IN HOURS OF OCCURENCES OF CONCURRENT SURFACE WIND SPEED AND DIRECTION RECORDED WITHIN SPECIFIED RANGES

OCTOBER — 1969

	rs)	ars)	hours)]	Numb	er in				rences				ng fro	om th	e
Station	calm (hours)	Variable (hours)	Unrecorded (hours)	Wind speed in knots	345 / 014	015 / 044	045 / 074	075 / 104	105 / 134	1 3 5 / 164	165 / 194	19 5 / 224	225 / 254	255 / 284	285 / 314	315 / 344	All directions
Asyout (A)	4	0	0	1—10 11—27 28—47 ≥48 All speeds	15 6 0 0 21	12 0 0 0 12	11 4 0 0 15	10 0 0 0 10	14 1 0 0 15	2 0 0 0 2	4 1 0 0 5	8 3 0 0	143 3 0 0 146	201 38 0 0 239	134 113 0 0	5 12 0 0 17	559 181 0 0 740
Luxor (A)	9	12	3	1—10 11—27 28—27 ≥48 All speeds	39 1 0 0 40	24 3 0 0 27	14 1 0 0 15	15 0 0 0 15	28 0 0 0 28	80 2 0 0 82	112 0 0 0 112	36 0 0 0 36	53 1 0 0 54	92 1 0 0 93	197 2 0 0 199	19 0 0 0 19	709 11 0 0 720
Aswan (A)	0	8	0	1—10 11—27 28—47 ≥48 All speeds	391 62 0 0 453	103 15 0 0 118	19 1 0 0 20	4 0 0 0 4	3 0 0 0 3	8 0 0 0 8	8 5 0 0 13	3 3 0 0 6	6 0 0 0	15 0 0 0 15	9 0 0 0	72 9 0 0 81	641 95 0 0 736
Siwa	2 6	2	0	110 1127 2847 ≥48 All speeds	26 0 0 0 26	67 8 0 0 75	67 8 0 0 25	93 3 0 0 96	107 3 0 0 110	54 2 0 0 56	21 0 0 0 21	17 2 0 0	21 3 0 0 24	42 0 0 0 42	86 9 0 0 95	72 5 0 0 77	673 43 0 0 716
Dakhla	3	3	11	1-10 11-27 28-47 ≥48 All speeds	60 7 0 0 67	60 11 0 0 71	34 0 0 0 34	50 0 0 0 50	28 2 0 0 30	25 0 0 0 25	45 0 0 0 45	18 0 0 0 18	38 1 0 0 39	89 0 0 0 89	210 11 0 0 221	34 4 0 0 38	691 36 0 0 727
Kharga	3	3	18	1—10 11—27 28—47 ≥48 All speeds	196 148 0 0 844	70 65 0 0 135	21 6 0 0 27	3 0 0 0 3	0 0 0	2 0 0 0 2	11 1 0 0 13	5 3 0 0 8	8 1 0 0	12 0 0 0 12	35 0 0 0 35	102 31 0 0 133	465 255 0 0 720
Hurghada	8	0	2	1—10 11—27 28—47 ≥48 All speeds	34 139 0 0 173	15 9 0 0 24	5 5 0 0 10	9 3 0 0 12	18 8 0 0 26	6 9 0 0 15	2 2 0 0 4	4 0 0 0 4	7 0 0 0 7	13 3 0 0 16	80 68 0 0 148	34 255 6 0 295	227 501 6 0 734
Quesir	4	0	3	1—10 11—27 28—47 ≥48 All speeds	82 98 0 0	110 25 0 0 135	49 0 0 0 49	13 0 0 0 13	11 0 0 0 11	10 0 0 0 10	21 2 0 0 23	9 1 0 0 10	3 0 0 0 3	19 0 0 0 19	83 0 0 0 83	179 22 0 0 201	589 148 0 0 737

UPPER AIR CLIMATOLOGICAL DATA

Table B1.—MONTHLY MEANS, ABSOLUTE HIGHER & LOWER VALUES OF ALTITUDE, AIR TEMPERATURE & DEW POINT AT STANDARD AND SELECTED PRESSURE SURFACES

OCTOBER — 1969

Station	Pressure Surface	Alti	tude of Pres	ssure Surfac	e (gpm)		Tempe	rature (°C)		Dew 1	Point (°C)
ž	(Millibar)	N	Mean	Highest	Lowest	N	Mean	Highest	Lowest	N	Mean
Merss Matruh 0000 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20 10	27 27 27 26 26 26 26 26 25 24 16 10 7 7 5 5	**101m.b. 124 1546 3120 4355 5769 7430 9453 10664 12095 13\$94 16390 18620 19574 20781 22161 23906 26520	** 1014m.b. 148 1554 3174 4407 5817 7493 9537 10763 12197 13980 16165 18700 19681 20822 22226	1005m.b. 71 1516 3069 4299 5707 7356 9354 10552 11946 13731 16226 18450 19368 20666 20666 ——————————	27 27 27 26 25 26 26 26 25 24 16 10 7 7 5 5	20.5 20.8 13.2 3.2 -4.1 -13.6 -25.9 -41.8 -50.3 -57.8 -61.1 -63.5 -62.4 -63.0 -59.5 -56.9 -53.6 -53.0	24.0 23.5 18.1 5.8 -1.5 -11.1 -22.5 -37.2 -44.9 -53.0 -57.2 -59.5 -58.3 -60.2 -58.5 -56.0	17.0 18.3 8.6 — 0.1 — 6.9 —16.9 —28.8 —44.1 —54.6 —61.6 —65.6 —71.7 —65.4 —67.5 —61.0 —57.6	27 27 27 26 25 26 26 26 24 17 4 —————————————————————————————————	17.1 17.0 5.5 - 5.4 16.9 28.1 36.9 51.4 09.1 65.4 66.9
Helwan 0000 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	29 29 29 29 29 28 27 27 26 25 24 18 16 13 11 9 8	997m.b. 115 1511 3133 4376 5799 7467 9496 10718 12160 13965 16449 18636 19627 20729 22143 23954 26540 30867	1001m.b. 140 1567 3204 4448 5862 7533 9592 10828 14088 16546 18712 19740 20784 22300 24023 26613	991m.b. 66 1450 3056 4294 5694 7351 9371 10591 12041 13887 16332 18482 19460 20641 21740 23880 26442	29 5 29 29 29 28 27 27 26 25 24 18 16 13 11	20.4 20.6 15.3 6.1 - 2.2 -12.2 -24.3 -40.4 -56.8 -61.9 -64.6 -63.9 -62.6 -60.9 -58.7 -55.0 -50.3 -53.3	24.1 24.1 20.7 11.0 0.5 — 9.3 —22.0 —37.7 —45.2 —50.7 —58.4 —59.8 —60.5 —59.1 —56.0 —57.3 —51.5 —45.8	15.0 17.8 7.9 1.7 - 5.3 -14.9 -26.6 -42.5 -53.2 -60.4 -65.8 -68.7 -67.6 -65.1 -67.3 -63.3 -61.9 -58.3	29 5 29 29 28 27 27 24 22 4 — — — — — —	15.2 15.6 4.8 -6.8 -13.8 -24.8 -36.2 -50.1 -58.3 -64.8 -67.3 -
Авжап 0000 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20 10	29 29 29 29 29 28 28 28 27 26 23 22 18 14 13	987m.b. 83 1503 3151 4408 5846 7537 9598 10835 12294 14091 16524 18663 19595 20723 22120 23957 26606	990m.b. 106 1534 3200 4470 5923 7625 9698 10949 12409 14237 16696 18790 19682 20824 22234 24082 26730	983m.b. 43 1472 3097 4347 5784 7476 9527 10764 12221 14012 16395 18580 19519 20655 22066 23900 26560	29 29 29 29 28 28 28 28 28 27 26 23 22 18 14 13 11 9 5	24.5 21.9 9.2 0.4 8.6 20.9 36.7 46.1 70.0 66.1 63.8 60.7 51.7 48.2	30.5 	17.8	29 29 29 29 28 28 28 27 26 — — — —	8.3 -1.4 -8.2 -15.8 -25.6 -36.3 -49.1 -57.3 -64.8

^{*} The atmospheric pressure corrected to the elevation of the radiosonde station.

N - The number of cases the element has been observed during the month.

UPPER AIR CLIMATOLOGICAL DATA

Table B1 (contd).—MONTHLY MEANS, ABSOLUTE HIGHER & LOWER VALUES OF ALTITUDE, AIR TEMPERATURE & DEW POINT AT STANDARD AND SELECTED PRESSURE SURFACES

OCTOBER - 1969

Station	Pressure Surface	A	titude of Pro	essure Surfa	ce (gpm)		Temp	erature (°C)		Dow	Point (°C)
2	(Millibar)	N	Mean	Highest	Lowest	N	Mean	Highest	Lowest	N	Moan
Morse Matrub 1200 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	29 29 29 29 29 28 28 28 28 19 14	** 1011m.b. 121 1515 3121 4353 5807 7439 9461 10675 12108 13927 16443 18668 19627 20861 22219	1014m.b. 156 1563 3194 4432 58-2 7546 9583 10812 12262 14066 16613 18810 19783 20937	1003m.b. 54 1447 3046 4254 5680 7333 9338 10545 11980 13833 16306 18500 19453 20784	29 29 29 29 29 28 28 28 19 14 9 6 3	24.8 23.7 13.4 3.6 -3.7 -13.0 -25.2 -41.4 -50.3 -57.1 -61.0 -62.6 -61.5 -59.2 -56.7 -50.9	28.4 27.7 18.3 8.2 1.0 — 8.7 —22.6 —38.1 —47.1 —52.9 —55.8 —58.0 —58.0 —56.8 —55.1	21.4 19.5 6.8 - 0.4 - 7.5 -15.6 -28.3 -44.0 - 53.2 -61.4 -68.5 -69.7 -64.6 -65.5 -57.7	29 29 29 29 29 29 28 28 25 19 4	17.3 16.1 4.0 -7.6 -16.1 -26.3 -36.4 -51.4 -59.1 -65.5 -66.0
Helwan 1200 U.T.	Surface 1000 850 700 600 800 400 300 250 200 150 100 70 80 50 40 30 20	31 31 31 31 30 30 29 29 27 19 17 13 13 10 10 8	996m.b. 103 1515 3141 4389 5817 7493 9528 10750 12195 14013 16503 18704 19677 20788 22329 24090 26752	1000 m.b. 140 1567 3212 4467 5906 7586 9636 10868 12325 14172 16693 18991 19900 20999 22530 24278 26944	# 992m.b 20 1454 3060 4295 5719 7369 9367 10574 12006 13817 163'9 18502 19470 20592 22110 23857 26507	31 2 31 30 31 30 29 29 29 27 19 17 13 13 10 10	28.9 28.6 16.5 7.0 — 1.6 —10.9 —23.2 —39.9 —48.5 —55.3 —61.1 —64.6 —61.2 —60.2 —58.7 —54.5 —50.6 —46.0	35.4 29.0 22.0 12.8 2.0 — 7.8 —18.3 —36.1 —45.5 —51.0 —56.2 —60.3 —58.6 —57.8 —56.0 —72.3 —41.9	25.1 28.2 10.4 1.2 -7.7 -16.8 -29.1 -44.0 -51.4 -58.7 -65.9 -65.6 -63.0 -61.4 -56.9 -55.0 -50.9	31 30 31 30 30 30 29 28 7 —	12.1 13.6 2.9 -9.5 -18.4 -28.7 -38.1 -53.3 -60.4 -66.3 -68.7
Aswan (A) 1200 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	29 29 29 29 27 27 27 26 25 24 24 20 11 10 4 2	* 986mb. 69 1510 3161 4420 5563 7560 9625 108 7 12329 14135 16583 18737 19651 20793 22170 24026 26718	989mb. 94 1549 3196 4462 5598 7610 9703 10940 12420 14231 16773 18880 19773 20926 22213 24047 26767	981 mb. 20 1479 3125 4384 5822 7514 9570 10799 12226 14059 16459 18610 19571 20690 22131 24009 26668	29 29 29 27 27 27 26 25 25 24 24 20 11 10 4 2	35.3 -22.7 10.3 1.3 -7.9 -19.9 -35.6 -44.8 -54.1 -63.5 -70.1 -65.1 -60.4 -59.1 -55.0 -50.8 -42.8	42.0	28.5 14.0 8.2 - 0.4 - 9.7 - 22.8 - 40.4 - 48.4 - 69.2 - 75.1 - 68.7 - 66.9 - 72.3 - 57.0 - 53.0 - 45.5	29 29 29 27 27 27 26 25 25 2 —	8.4 -0.5 -10.2 -17.4 -27.5 -37.9 -58.5 -66.0 -69.4 -

^{*} The atmospheric pressure corrected to the elevation of the radiosonde station.

H - The number of cases the element has been observed during the month.

Table B 2.—MEAN AND EXTREME VALUES OF THE FREEZING LEVEL AND THE TROPOPAUSE. THE HIGHEST WIND SPEED IN THE UPPER AIR

OCTOBER - 1969

					Fr	eezing Le	vel							Frie	st Trop	opause				Hi	ghest	wind sp	eed
			Mean			Highest			Lowes	t		Mean			Highes			Lowes		Î) <u>-</u>		Knots
	Station	Altitude (gpm)	Pressure (mb.)	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Direction (000—360)	Speed in Kr
1	M. Matruh (A)	(N) 3590	(N) 661	(N) -9.1	4000	627	- 8.9	3050	702	- 0.4		(N) 19 6	(N) 59.9	16278	100	_71.7	1 1080	231	_54.0	14105		2 90	125
0000 U.T.	Helwan	(25) 403; (29)	(25) 627 (29)	(24) —11.3 (29)	4610	5 85 –	-18.2	3500	665	—24 .3	(16) 1 3883 (19)	(16) 157 (19)	(16) 63.2 (19)	16000	10 6	67.0	11300	2 28	56.5	12140	198	290	162
	Aswan (A)	4431 (28)	598 (28)	—16. 6 (28)	4880	564 —	-28.0	3839	645	- 9.5	15130 (20)	128 (20)	-69.5 (20)	16543	100	—74.4	12540	192	 61.5	11410	225	300	110
											(N)	(N)	(N)										
J.T.	M. Matruh (A)	3728 (29)	650 (29)	—11.0 (28)	4630	584 —	-29.0	3064	70 0	-11.0	12433 (17)	188 (17)	-59.2 (17)	15230	122	-68.1	11000	237	52.8	12480	-	255	112
1200 U.T	Helwan	4131 (31)	619 (31)	—15.4 (31)	4700	584	-20.2	3120	694	_ 1.7	13867 (21)	157 (21)	-62.1 (21)	16810	[98	-65.1	11460	226	54.6	14990	126	290	150
1	Aswan (A)	4601 (27)	588 (27)	—18.4 (27)	4920	565	-24.3	4150	618	-11.2	15508 (21)	121 (21)	-68.7 (21)	16773	100	-73.3	12620	189	57.8	13115	176	286	134

N = The number of cases the element has been observed during the month.

Table B 3.—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES.

MERSA MATRUH (A) — OCTOBER 1969

				.,	.,	· · · · · ·		Wi	ind b	et wee	n spe	ecifie	d ran	ges o	f dire	etion	(000	—36 0	°)							Calm	er of (T N)	Wind ts)
Time	Pressure Surface (Millibar)		45 / 14 (ff)		15 / 44 (ff)		45 / 74 (ff)		75 / ()4	1	05 / 31		135 / 164		165 / 194	·	195 / 224		225 / 254		255 / 284		285 / 314		315 / 344	Number of Ca	Numh	Mean Scalar Wind Speed (Knota)
		N	m	N	m	N	m	N	(ff)	N	(tf) m	N	(ff) m	N	(ff m	N	(ff m	N	(ff m	N	(ff)	N	(ff)	N	(ff) m	Nun	Total Observ	Mea
0000 U.T.	Surface 1000 850 709 600 500 400 300 250 200 150 100 70 60 50 40 30 20 10	4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 14 8 12 	2 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 10 8 5	2 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 11 4	3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 12 	2 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 11 4	3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 6 - - - - - - - - - - - - - - - - - - -		6 -20 14 6 -6 -21 19 12 15	0	19 6 20 11 25 33	0	19 20 24 25 33 52 48	1 1 4 0 0 5 6 8 5 7 7 4 1 1 1 2 1 0 0 0 —	77 9 12 28 27 38 45 51 44 37 53 50 16 56	0 1 6 11 10 7 7 8 6 4 4 2 1 1 0 0 0 0 0 0	13 15 16 25 33 45 54 80 100 76 58 28	0 4 4 4 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 16 14 26 	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27 27 26 23 24 24 25 24 22 22 15 8 6 5 1	7 11 13 16 24 27 36 47 55 55 49 39 32 14 22 13 10 ———
1200 U.T.	30 20	9 7 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0	9 11 6 14 	0 0 0 0	10 12 10 	-		4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14 18	- 1	7 12	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5	0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1	33 17 	1 1 2 1 3 2 1 1 1 0 0 0 2 2 0 1 1 0	8 14 19 25 20 22 23 44 — — — — — — — — — — — — — — — — — —	0 0 3 5 4 5 5 9 7 6 3 1 1 0 — — —	7773223336464544438818	0 0 7 7 10 16 12 12 11 11 12 5 4 1 0 0	0 0 13 18 22 31 34 42 52 59 41 52 7	1 2 8 8 7 4 5 6 6 6 6 5 2 1 0 0 — — — — — — — — — — — — — — — — —	15 12 12 19 26 32 38 58 63 56 57 37 22 ————————————————————————————————	4 4 4 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 13 9 15 18 	0 0 0 0 0 0 0 0 0 0 0 0 0 0	29 29 29 28 28 28 27 26 26 26 11 4 3 2	11 12 12 19 23 29 36 47 53 55 45 35 15 9 7

N = The number of cases the elemnt has been observed during the month.

TN = The total number of cases the wind has been observed for all directions during the month.

Table B 3.(contd.)—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES.

HELWAN — OCTOBER 1969

									w	ind 1	betwe	en ra	nges o	of dir	ection	(000)— 3 €	0) °				-				Calm	or of (TN)	wind ots)
rime.	Pressure Surface (Millibar)		45 / 14		15 / 44	04	'	0'	75 		05 / 34	1	35 / 64		65 / 94		95 / 24	1	25 25 4		55 84		8 5 / 14		15 / 44	of Ids	Numb ration	Scalar I (Kn
	(====,	N	(ff)	N	(ff)	N	(ff)	N	(ff)	N	(ff)	N	(ff)	N	(ff)	N	(ff)	N	(ff) m	N	(ff)	N	(ff)	N	(ff) m	Number wii	Total observ	Mean Speed
0000 U.T.	Surface 1000 850 700 600 500 400 300 250 260 150 100 70 60 50 40 30 20	5 0 0 0 0 0 0 0 0 0 0 0 0	8 -12 	5 1 2 0 0 0 0 0 0 0 0 0 0 0	8 11 13 	11 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 8	0 0 2 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 2 5 6 2 1 0 1 1 1 0 0	12 34 32 40 40 61 54	0 0 1 6 6 8 9 7 5 5 1 0	111 277 288 299 388 533 668 622 75	0 0 4 5 5 10 9 9 11 9 5 1 — — — — — —	15 26 28 40 46 62 65 71 87 38	0 0 3 8 8 6 1 1 2 0	18 23 31 43 60 73 87 73 102 — — — — —	1 0 3 2 1 2 2 2 1 1 0 0 — — — — — — — — — — — — — — — —	5 -11 20 20 46 54 99 93 159 	7 0 7 3 2 0 0 0 0 0 0 - -	8 13 19 18 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	29 5 29 29 28 28 26 24 19 17 8 1 —	9 9 13 26 29 36 46 65 68 73 90 38 — — —
1200 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	11 2 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 13 18 	5 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0	13 16 2	1 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 12	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8	0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16 	0 0 2 8 6 3 1 1 0 0 0 0 0 0	23 27 34 49 60 63 —————————————————————————————————	3 0 2 5 6 9 10 6 7 7 5 1 0 0 1	9 21 28 36 29 43 45 54 65 66 30 	2 0 3 5 7 8 8 8 11 9 4 1 0 1	11	0 0 2 8 8 6 8 7 7 3 1 0 0 0	8 20 39 40 45 77 81 120 — — — — — — — — — — — — — — — — — — —	5 0 2 4 2 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 111 222 36 40 50 — — — — —	3 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 13 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31 2 31 30 29 29 26 23 19 10 3 1 1	11 13 15 24 31 36 46 58 65 75 80 38 20 8

N = The number of cases the element has been observed during the month.

TN = The total number of cases the wind has been observed for all directions during the month.

Table B 3 (contd.).—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES.

ASWAN (A) — OCTOBER 1969

									W	ind '	betwe	en ra	nges	of dir	ection	(000	3 60	0)•								Celm	¥ (£)	wind
å	Pressure Surface		45 /	01	'		4 5 /		75 	ĺ	10 5		1 3 5	1	6 5	[95 /		25 /		55 /		85 /	1	315 /	७ न	tion (TN)	Alar w
Time	(Millibar)	-	14 (ff)	04	(ff)		74 (ff)	<u> </u>	04 (ff)	<u> </u>	(ff)	i -	164 (ff)		94 (ff)	-	24 (ff)		54 (ff)	i	84 (ff)	1	14 (ff)	Ì	344 (ff)	Number wir	Total Numi	Mean Scalar wind Spred (Knots)
		N	m	N	m	N	m	N	m,	N	m	N	m	N	m	N	m	N	m	N	m	N	m	N	m	Ź	유송	¥ s
0000 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20 10	17 3 0 0 0 0 0 0 0 0 0 0 0 0 0	17 	5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 9 14	0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 1 2		0 3 1 1 0 0 0 0 0 0 0 0 1 1 1 2 2 2 2	12 8 12 	1	6 10 27 20 — — — — 12 24 11 —	0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0	10 15	0 1 2 3 2 2 0 0 1 0 3 2 2 2 0 0 0 1 0 0		0 56 62 24 4 2 0 0 0 1 0 0 1	12 16 16 28 35 53 — 22 8 — 7	0 1 4 5 12 13 13 15 13 13 13 19 4 2 1 1		3 5 4 6 6 6 7 6 6 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 - 6 17 18 22 31 44 45 55 57 32 12 10 	0 -0 2 7 3 4 4 2 2 2 2 0 1 0 0 0	14 20 36 50 63 87 92 96 11 —————————————————————————————————	4 3 5 1 1 0 0 0 0 0 0 0 0 0 0	4 10 16 11 6 - - - - - - - - -	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	29 	8 10 14 18 20 29 40 49 56 58 29 14 15 12 8 12 23
1200 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	12 2 2 2 0 0 0 0 0 0 0 0 0 0 0	8	2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 226 111	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 9 0 - - - - - - - - - - - - -	0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6	0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0	- - - - - - - - - - - - - - - - - - -	1 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 8 7 - - - - - - - - - -	3 2 4 2 0 0 0 0 0 1 3 0 0 0	6 -7 13 19 	1 2 8 3 5 4 0 0 0 1 1 2 2 1 0 0 0	15	2 1 4 4 10 11 15 14 8 9 9 1 1 2 0 0 1	4 13 17 15 22 27 40 47 55 43 33 12 9 —	1 3 2 4 7 10 8 6 12 9 5 5 3 0 0 0 0 0	2 9 20 24 26 34 47 53 51 59 32 30 — 11 — —	2 4 3 8 3 2 3 4 3 2 1 1 0 0	6	6 4 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 10 20 12 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	29 29 29 27 27 27 26 24 24 22 21 14 10 7	6 9 13 17 21 31 45 52 58 54 35 18 13 13 8 14

N = The number of cases the element has been observed during the month.

TN - The total number of cases the wind has been observed for all directions during the month.

REVIEW OF AGRO-METEOROLOGICAL STATIONS

MERSA MATRUH — OCTOBER 1969

This month as a whole was slightly cooler than normal and appreciably more rainy. The total monthly rainfall was 89.8 mm. against 16.2 mm. for normal. The maximum daily rainfall was 28.1 mm. reported on the 19th. The daily maximum air temperatures were below normal during the periods (7th-12th), (19th - 24th) and (28th - 30th) and slightly above normal otherwise. The highest maximum air temperature for the month was 29.6°C reported on the 2nd, and the lowest was 22.6°C reported on the 22nd.

The daily mean actual duration of bright sunshine was 0.7 hour less than the correspinding value of El Kasr in October 1968.

TAHRIR - OCTOBER 1969

This month as a whole was slightly warmer than last October. The prevailing weather during the month was mild in general. Three light heat waves occurred on the 6th and during the periods (18th - 19th) and (26th - 23th). The first heat wave yielded the highest maximum air temperature for the month (34.4°C). The second heat wave yielded the lowest value of relative humidity (29,%) on the 19th.

The extreme maximum soil temperatures were higher than the corresponding values of last October at all depths apart from the 5 cm. depth where it was slightly lower (0.7°C); the differences varied between 1.6°O at 50 cm. and 0.6°C at 100 cm. The extreme minimum soil temperatures were lower than last October at shallow depths between 2,10 cm. with small differences not exceeding 0.2°C. At deeper depths between 20,100 cm. the extreme soil minima were higher than last October and the differences varied between 0.3°, 0.6°C.

The daily mean Pan evaporation was 0.16 mm. less than the corresponding value of October 1968. The daily mean actual duration of bright sunshine was 0.9 hour less than October 1968.

BAHTIM - OCTOBER 1969

This month as a whole was warmer than last October. The prevailing weather during the month was mild in general. Three heat waves were experienced during the periods (6th - 7th), (18th - 19th) and (26th - 28th). The first heat wave yielded the highest maximum air temperatue for the month (34.9°C) on the 6th. The second heat wave yielded the lowest value of relative humidity (23 %) on the 19th.

The extreme maximum soil temperatures were lower than the corresponding values of last October at 2,5 cm. depths with differences 1.1°, 1.0°C respectively. At deeper depths between 10,100cm. the extreme soil maxima were higher than last October and the differences varied between 2.1°C at 20 cm. and 0.6°C at 100 cm. The extreme minimum soil temperatures were slightly lower (0.2°C) than the -corresponding values of last October at depths between 2.10 cm. At deeper depths between 20,100 cm. the extreme soil minima were higher than last October and the differences varied between 0.1°C at 20 cm. and 0.9°C at 50cm.

The daily mean Pan evaporation was 0.59 mm, more than the corresponding value of October 1968. The mean daily actual duration of bright sunshine was 0.7 hour less than October 1968

KHARGA - OCTOBER 1969

This month as a whole was warmer than normal. The daily maximum air temperatures were above normal most of the month. The month was characterized by three pronounced heat waves during the periods (1 st - 7th), (18th - 19th) and 26th - 28th). The last heat wave yielded the highest maximum air temperature for the month (39.9°C) and the lowest value of relative humidity (11 o/°) on the 28th.

The extreme maximum soil temperatures were higher than the corresponding values of last October at all depths between 2,100cm. and the differences varied between 6.5°C at 2 cm. and 1.0°C at 100 cm. The extreme minimum soil temperatures were higher than the corresponding values of last October at all depths apart from the 5 cm. depth where it was slightly lower (0.5°C); the differences varied between 0.8°C at both, 2,10 cm. and 2.2°C at 50 cm.

The daily mean Pan evaporation was 1.92 mm. more than the corresponding value of October 1968. The daily mean actual duration of bright sunshine was 0.6 hogr less than October 1968.

Table C 1.—AIR TEMPERATURE AT 11 METRES ABOVE GROUND
OCTOBER — 1969

		Air Tei	nperatu	re (°C)				Mean I			irs of d followin	-	_	rature		
STATION	Mean Max.	Mean Min.	Mean of the day		Day time mean	_5°C	0° C	5° C	10°C	15°C	20°C	25°C	30°C	35°C	40°C	45°C
Mersa Matruh	26.0	17.9	21.7	20.1	23.4	24.0	24.0	24.0	24.0	23.5	17.2	3.1	0.0	0.0	0.0	0.0
Tahrir	30.1	16.6	22.4	19.2	25.7	24.0	24.0	24.0	24.0	23.1	15.7	7.1	0.9	0.0	0.0	0.0
Bahtim	30.3	15.7	22.5	19.0	26.1	24.0	24.0	24.0	24.0	22.8	15.7	7.8	1.8	0.0	0.0	0.0
Kharga	34.7	20.4	27.6	24.8	30.6	24,0	24.0	24.0	24 .0	23.7	22.5	16.3	7.0	2.0	0.0	0.0

Table C 2.—EXTREME VALUES OF AIR TEMPERATURE AT 1½ METRES ABOVE GROUND, ABSOLUTE MINIMUM AIR TEMPERATURE AT 5cms ABOVE GROUD OVER DIFFERENT FIELDS.

OCTOBER — 1969

	Ma	t. Temp.	t 1½ me	re s	Min, 7	Temp. at	1½ metre	es (°C)	Min.	Temp. at	5 cms. ab	••••
STATION	Hig	hest	Lov	vest	Hig	hest	Lo	west	Dry	s oil	Gras	
	value	Date	value	Date	value	Date	v alue	Date	Value	Date	Value	Date
Mersa Matruh	29.6	2	22.6	22	21.7	10	13.5	23,24,31	11.0	31	_	_
Tahrir	34 . 4	6	26.2	21	20.9	7	12.5	31	10.4	31	_	
Bahtim	34.9	6	26.3	31	20.2	7	10.5	31	8.5	30,31		_
Kharga	3 9.9	28	28.3	30	26.1	1	12.4	23,31	10.2	31	_	_

Table C 3.— (SOLAR + SKY) RADIATION, DURATION OF BRIGHT SUNSHINE, RELATIVE HUMIDITY, & VAPOUR PRESSURE AT 1½ METRES ABOVE GROUND, EVAPORATION & RAINFALL.

OCTOBER — **1969**

	r Radia- cal/cms		on of Bu		R		Humid %	ity		Vapo	ur pr	essure	(mms)			por a - (mms)		nfall (m	ms)
STATION	(Solar + Sky F tion gm. cal	Total Actual monthly	Total Possible monthly	%	Mean of day	1200 U.T.	Lowest	Date	Mean of day	1200 U.T.	Highest	Date	Lowest	Date	Piche	Pan class A	Total Amount Monthly	Max. Fall in one day	Date
M. Matruh	318.0	249.8	353.6	71	74	61	33	31	14.2	14.2	18.7	3	7.2	31	6.2	5.80	89.8	28.1	19
Tahrir	429.2	284.0	354.6	81	73	47	29	19	14.6	13.6	19. 6	6	9.7	31	6.0	6.02	2.7	2.4	18
Bahtim	452.0	2 83.6	3 54.8	80	67	40	23	19	13.2	12.1	18.7	11	7.6	19	8.0	7.14	1.1	0.8	9
Kharga .	414.1	*284.5	358.6	88	33	22	11	28	8.7	8.4	15.4	8	4.4	25	19. Į	14.88	0	0	_

^{*} Total for 28 days

Table C 4.—EXTREME SOIL TEMPERATURE AT DIFFERENT DEPTHS (ems)
IN DIFFERENT FIELDS

OCTOBER - 1969

S	est (H)		Extre			ature (° depths		ry field		Ext					c) in g (cms.)	rass fi	ield
STATION.	Highest Lowest	2	5	10	20	50	100	200	300	2	5	10	20	50	100	200	3 C
Mersa Matruh.	H L	39.9 14.5	35.4 14.8	31.2 16.1	28.8 17.4	27.4 20.9	26.7 21.5	25.7 24.2	 	_	-		-	<u>-</u>	_	_	_
Tahrir	H L	45.5 18.1	40.3 18.0	35.6 19.4	3 2.2 22 .9	30.1 25.2	29.7 26.6	28.9 27.3	28.3 27.6		_	-	-	_	<u>-</u>	_	=
Bahtim	H L	44.5 19.5	38.9 19.4	34.3 22.4	32.3 25.7	30.7 27.6	30.2 28.2	28.1 27.7	26.7 26.4	=	_	-	-	-	_	_	=
Kharga	H L	49.6 15.7	43.5 18.2	38.2 23.1	35.0 27.4	34.6 30.4	33.3 31.4	31.5 31.2	30.5 30.1	_	_	_	_	_	_	-	=

Table C 5.—SURFACE WIND OCTOBER — 1969

	1	nd Speed at 11/, met	•		Days	with surfa	oe wind s	peed at I) metres		1	st (knots meters)
STATION	Mean of the day	Nìght time mean	Day time mean	≥10 knots	≥15 knots	≥20 knots	≥25 knots	30 knots	≥35 knots	≥40 knots	value (knots)	Date
Mersa Matruh.	3.6	2.8	4.5	30	23	10	3	1	0	0	39	18
Tahrir	2.0	1.3	2.7	29	13	3	0	0	0	0	33	18,19,2
Bahtim	2.3	1.2	3.4	3 0	13	1	1	o	0	0	29	19
Kharge	3.8	3.1	4.5	31	22	9	3	0	0	0	33	2

PRINTED IN ARAB REPUBLIC OF EGYPT
BY THE GENERAL ORGANIZATION
FOR GOVT. PRINTING OFFICES. CAIRO

First Under-Secretary of State

ALY SULTAN ALY

Chairman of the Board of Directors

MONTHLY WEATHER REPORT

VOLUME 12

NUMBER 11

NOVEMBER, 1969

ATMOSPHERIC SCIENCES

SEP 6 1976

- N.O.A.A.

J. S. Dept. of Commerce

U.D.C. 551, 506.1 (62)

THE EGYPTIAN METEOROLOGICAL AUTHORITY
CAIRO

PUBLICATIONS OF THE METEOROLOGICAL AUTHORITY OF THE ARAB REPUBLIC OF EGYPT—CAIRO

In fulfilment of its duties, the Egyptian Meteorological Authority issues serveral reports and publications on weather, climate and agro-meteorology. The principal publications are described on this page.

Orders for publications should be addressed to :

"Chairman of the Board of Directors, Meteorological Authority, Kubri-el-Qubbeh - CAIRO".

THE DAILY WEATHER REPORT

This report is issued daily by the Meteorological Authority since the year 1901. It includes surface and upper air observations carried out by the relevant networks of the Republic at the principal hours of observations.

As from January 1968 this report was revised to include a condensed representative selection of surface and upper air observations besides the 1200 U.T. surface & 500 mb charts.

As from 1st January 1972, the Daily Weather Report will not be issued or distributed because it does not serve no longer any good purpose as it used to be in the past. The Meteorological Authority is ready to supply the recipients of the Report with any information used to be included in it, if they so desire.

THE MONTHLY WEATHER REPORT

First issued in 1909, the Monthly Weather Report served to give a brief summary of the weather conditions that prevailed over Egypt during the month, with a table showing the mean values for few meteorological elements and their deviations from the normal values. From 1954 to 1957 this report was in a rapid state of development and extension resulting into a voluminous report on January 1958 giving surface, upper air, and agro-meteorological data for Egypt.

As from January 1964, the Monthly Weather Report was pressed to give climatological data for a representative selection of synoptic stations.

THE AGRO-METEOROLOGICAL ABRIDGED MONTHLY REPORT

Gives a review of weather experienced in the agro-meteorological stations of Egypt as well as monthly values of certain elements.

THE ANNUAL REPORT

This report gives annual values and statistics for the various meteorological elements, together with a summary of the weather conditions that prevailed during all months of the year.

CLIMATOLOGICAL NORMALS FOR EGYPT

A voluminous edition was issued in March 1968 which brings normals and mean values up till 1960.

METEOROLOGICAL RESEARCH BULLETIN

First issued in January 1969 on a bi-annual basis. It includes research works carried out by members of staff of "The Meteorological Institute for Research and Training" and the Operational Divisions of the Meteorological Authority.

TECHNICAL NOTES

As from October 1970, the Meteorological Authority started to issue a new series of publications in the form of Technical Notes (non periodical) on subjects related to studies and applications of meteorology in different fields for the benefit of personnel working in these fields.

MONTHLY WEATHER REPORT

VOLUME 12

NUMBER 11

NOVEMBER, 1969

U.D.C. 551. 506.1 (62)

CONTENTS

		PAGE
	General Summary of Weather Conditions	1,2
	SURFACE DATA	
Table	A1.—Monthly values of the Atmospheric Pressure, Air Temperature, Relative Humidity, Bright Sunshine, Duration and Piche Evaporation	3
"	A2Maximum and Minimum Air Temperatures	4
**	A3.—Sky Cover and Rainfall	5
,,	A4.—Number of Days of Occurrence of Miscellaneous Weather Phenomena	6
19	A5.—Number in Hours of Occurrences of Concurrent Surface Wind Speed and Direction Recorded Within Specified Ranges	7,8
	UPPER AIR DATA	
Table	B1.—Monthly Means and Monthly Absolute Higher & Lower Values of Altitude, Air Temperature & Dew point at Standard and Selected Pressure Surfaces	9,10
,,	B2.—Mean and Extreme values of The Freezing Level and The Tropopause; The Highest Wind Speed in The Upper Air	11
**	B3Number of Occurrences of Wind Direction within Specified Ranges and The Mean Scalar Wind Speed at the Standard and Selected Pressure Surfaces	12-14
	AGRO-METEOROLOGICAL DATA	
	Reviews of Agro-meteorological Stations	15,16
Table	C1.—Air Temperature at 1½ metres above Gorund	17
,,	C2.—Absolute Values of Air Temperature at 1½ metres above Ground, Absolute Minimum Air Temperature at 5 cms above Ground over Different Fields	1 17
11	C3.—(Solar + Sky) Radiation, Duration of Bright Sunshine, Relative Humidity and Vapour Pressure at 1½ metres above Ground, Evaporation and Rainfall	17
"	C4.—Extreme Soil Temperature at Different Depths in Different Fields	18
"	C5.—Surface wind	18

Note: For explanatory notes on the tables please refer to Volume 12, Number 1 (January 1969).

GENERAL SUMMARY OF WEATHER CONDITIONS

NOVEMBER 1969

Generally stable and slightly changeable. Light and subnormal rainfall in the north.

GENERAL DESCRIPTION OF WEATHER

The prevailing weather during this month was generally mild in the northern and middle parts, and warm in the southern parts.

Weather was almost fine with the exception of few days of light rain over scattered localities in the northern districts. Rain was locally heavy over Mersa Matruh on the 1st and Alexandria on the 8th.

Early morning mist and fog developed during several days over scattered parts in Delta, Cairo and north of Upper Egypt districts.

PRESSURE DISTRIBUTION

The most outstanding pressure systems over the surface maps during this month were:

- The Atlantic anticyclone and its extension through the Mediterranean Saa.
- The Siberian anticyclone and its extension through East Mediterranean.
- Deep low pressure systems moving through North Europe, associated sometimes with secondaries over the Mediterranean Sea.
 - The Sudan low pressure trough.

During this month, three Mediterranean secondaries were distinguished. The first secondary appeared over East Mediterranean on the 1st and traversed the area on the 2nd while filling. The second secondary depression appeared over West Mediterranean on the 25th. It proceeded eastwards and traversed Asia Minor on the 28th. A low pressure system developed over West Mediterranean on the 29th and proceeded slowly eastwards the next day.

The barometric pressure over Egypt was affected most days of the month by the southeast extension of the Atlantic anticyclone or the southwest extension of the Siberian anticyclone. It was accordingly above normal in general, though it experienced six oscallations and reached consecutive minima round the 1st, 7th, 14th, 16th, 21th and 28th respectively. The first and last pressure minima associated the transit of the secondary depressions through East Mediterranean on the 1st and 28th. The other four pressure minima accompanied the northward elongation of the Sudan low pressure trough.

The important pressure systems over the upper air charts during this month were:

- Deep upper low pressure systems over
 North Atlantic and North Eurasia.
- Secondary upper troughs or closed lows through the middle latitudes, traversing East Mediterranean on the 2nd, 8th, 13th, 18th, 22nd and 29th.
- Upper high pressure belt over the subtropical latitudes.

SURFACE WIND

Light to moderate N/NW winds prevailed over the Republic most days of this month. Winds became fresh to strong during several days over few scattered localities mainly in the Red Sea and Western Desert districts.

TEMPERATURE

Maximum air temperature showed small variability during this month in general. It was above normal during the fourth week and mostly below normal the rest of the month. Maximum air temperature values ranged generally between 22° & 27°C in the northern and middle parts, and between 29° & 32°C in the southern parts.

The absolute maximum air temperature was 33.4°C reported at Kom Ombo on the 1st. & 15th.

Minimum air temperature fluctuations were rather similar to the maximum air temperature fluctuations, though it continued above normal most days of the month.

Minimum air temperature values ranged generally between 13° & 18°C in the northern and southern parts, and between 10° & 15°C in the middle parts.

The absolute minimum air temperature was 6.0° C reported at Farafra on the 27th.

PRECIPITATION

Light rain fell over the Mediterranean district during the period from the 1st to the 8th. and on the 28th. It extended sometimes to few land localities. Rain was locally heavy over Mersa Matruh on the 1st and over Alexandria on the 8th. The monthly rainfall was below normal over all districts.

The highest daily rainfall was 15.2 mm. reported at Alexandira on the 8th.

The highest monthly rainfall was 22.5 mm reported at Ras El Teen (Alexandria area).

Chairman (M. F. TAHA)

Board of Directors

Cairo, March 1972

SURFACE DATA

Table A 1. — MONTHLY VALUES OF THE ATMOSPHERIC PRESSURE, AIR TEMPERATURE, RELATIVE HUMIDITY, BRIGHT SUNSHINE DURATION & PICHE EVAPORATION.

NOVEMBER — 1969

	Atmos					Air T	emperatu	re [©] C				Rela	tive	Brig	gh t Sunsh i	ine	nme.
	Pressure M.		Maxi	mum	Mini	mum		Dry	Bulb	Wet	Bulb	Humid	it y %	Dura	tion (Hou	rs)	tion 1
S1 ATION	Mean	D.F Normal or Average	(A) Mean	D.F Normal or Average	(B) Mean	D.F Normal or Average	$\frac{A+B}{2}$	Mean	D.F Normal or Average	Mean	D.F Normal or Average	Mean	D.F Normal or Average	Total Actual	Total Possible	%	Piche Evaporation mms
dellum	1016.7 1019.6 1018.9 1017.7	$ \begin{array}{c} -1.1 \\ +1.8 \\ +1.7 \\ +1.2 \\ - \end{array} $	23.7 22.8 23.6 24.3 —	- 0.9 - 0.6 - 0.9 + 0.3	15.5 14.2 15.1 18.9	+ 0.6 + 0.8 + 0.4 + 0.4	19.6 18.5 19.4 21.6	19.2 18.3 19.3 21.0	0.6 + 0.1 0.0 + 0.1	15.1 15.4 16.0 17.5	- 0.2 + 0.7 - 0.1 - 0.1	62 72 69 69 —	+ 2 + 5 0 - 2 -	243.6 257.4 250.5 —	316.9 318.0 318.0 —	77 81 79 —	6.0 5.6 5.0 7.5
Santa	1018.5	1.5	25.3	- 0.5	12.9	- 0.5	19.1	18.2	- 0.2	15.0	- 0.2	69	1	_	_	_	-
Saito (A)	1018.0	+ 0.9	24.9	- 0.3	14.4	+ 0.6	19.6	19.1	- 0.2	15.4	+ 0.4	65	+ 4	-	_		8.1
Fayoum (A) Minya (A) Assyout (A) Luxor (A) Aswan (A)	1017.1 1016.2 1014.8 1014.3	$ \begin{array}{c} + 0.5 \\ - 0.2 \\ + 0.2 \\ - 0.1 \end{array} $	26.4 26.0 26.7 30.7 30.3	$ \begin{array}{c cccc} & -0 & 1 \\ & -0 & 8 \\ & +0.1 \\ & +1.0 \\ & -0.2 \end{array} $	13.0 12.5 13.2 13.5 15.6	- 0.2 + 1.0 + 0.4 + 1.3 + 1.0	19.7 18.8 20.0 22.1 22.9	19.4 18.6 19.4 21.7 22.7	$ \begin{array}{c c} -0.1 \\ +0.2 \\ 0.0 \\ +0.2 \\ +0.3 \end{array} $	15.5 14.6 14 2 15.3 14.2	+ 0.4 + 0.1 + 0.6 + 0.5 + 0.7	64 62 53 47 34	+ 5 + 2 + 5 0 + 4	264.7 — —	323.5 —	82 —	3.6 6.7 9.3 9.5 17.8
liwa	1018.4 1018.2 1019.1 1017.7 1016.1	+ 0.4 + 0.5 + 0.6 + 2.3 - 0.0	25.6 25.9 25.2 26.3 27.8	- 0.7 - 0.3 - 1.0 - 1.4 + 0.1	11.0 12.1 11.5 11.6 14.0	+ 0.9 + 0.8 + 0.8 + 0.1 + 1.1	18.3 19.0 18.4 18.8 20.9	18.1 18.7 18.1 18.7 21.0	+ 0.1 + 0.5 - 0.2 - 0.4 + 0.4	12.8 13.7 13.1 12.8 14.0	+ 0.2 + 0.2 + 1.2 + 0.8 + 0.6	51 54 53 46 46	+ 1 + 3 + 10 + 8 + 4	276.1 — — — 306.5	321.7 — — 328.0	86 - - 93	8.0 5.2 8.6 10.1 12.5
Cor	1014.9 1014.5	+ 0.1 - 0.1	26.7 26.8	+ 0.8 - 0 5	17.0 20.1	+ 1.5 + 0.6	21.8 23.5	22.0 23.6	+ 1.1 + 0 5	17.4 18.2	- + 1.9 + 0 9	61 56	- + 7 + 3	<u>-</u>	_	=	10.3 15.5

Table A 2.—MAXIMUM & MINIMUM AIR TEMPERATURE

NOVEMBER — 196 9

			Maxi	mum Ten	peratur	• •C				Grass Ten				Minimur	n Temper	ature °C	;		
Station	Highest	Date	Lowest	Date	Ns	of Day	ys with	Max-Te	mp.	Mean	From Normal	Highest	Date	Lowest	Date	No	of Da	ys with	
	Hill	A	Š		>25	>30	>35	>40	>45	A	Dev. Fro	Ĥ		Ä	Ω	<10	<5	<0	<-5
Sallum	28.3 25.3 27.2 27.0	26 27 1 1	19.8 20.0 21.5 22.0	29 29 30 30 —	8 1 1 4 —	0 0 0 -	0 0 0	0 0 0 -	0 0 0 0	15.2 12.3 12.8 14.3	111111	17.9 18.0 18.2 20.7	22 22 2 5	12.4 11.0 12.1 15.8	30 30 19 3 —	0 0 0 0	0 0 0	0 0 0 -	0 0 0
Tanta	×		×		×	×	×	×	×	_		×	_	×	_	×	×	×	×
Cairo (A)	26.6	1	20.8	30	18	0	o	o	0	_	_	18. 3	1	11.2	27	o	0	o	0
Fayoum	28.3 28.7 30.2 33.2 33.0	17 27 1 1 2	22.4 20.8 21.3 25.8 26.0	30 30 30 30 30 30	28 26 27 30 30	0 0 1 23 19	0 0 0 0	0 0 0 0	0 0 0 0	11.4 9.7 10.7 11.0		15.6 15.6 18.8 16.4 18.6	13 23 2 2 2 2	8.9 8.5 9.0 10.4 13.5	30 30 30 29 9	2 2 1 0 0	0 0 0 0	0 0 0 0	0 0 0
Siwa	28.2 28.8 29.8 33.0 32.3	11 27 28 1	21.8 21.7 20.6 21.4 22.7	29 30 30 30 30	21 23 11 26 29	0 0 0 1 4	0 0 0 0	0 0 0 0	0 0 0 0	7.8 10.7 10.8 ————————————————————————————————————		17.4 14.3 14.4 17.0 17.8	1 13 13 2 7	6.1 6.9 6.0 6.2 9.6	30 30 27 27 27 29	11 4 6 7 2	0 0 0 0	0 0 0	0 0 0 0
Tor	29.6 28.7	2 2 2	23.4 23.6	30 30	29 29	0 0	0 0	0 0	0 0	- - 17.1	-	19.8 21.7	$\begin{array}{c c} - \\ \hline 2 \\ 23 \end{array}$	14.0 17.5	28 28	0 0	0 0	0 0	0

Table A 3.—SKY COVER AND RAINFALL

NOVEMBER - 1969

}		Mean	Sky Cov	er Oct						Rainfal	l mms					
Station	00	06	12	18	Daily	Total	Dev. From	in on	r. Fall ne day		Numb	er of Day	s With A	mount of	Rain	
	U.T.	U.T.	U.T.	U.T.	Mean	Amount	Normal	Amount	Date	< 0.1	≥ 0.1	≥ 1.0	≥ 5.0	≥ 10	≥ 25	≥ 50
allum	4.4 2.5 4.8	3 0 4.7 4.4 3.3	4.8 4.4 5.3 3.2	4.0 3.1 4.0 3.4	4.1 3.7 4.6 —	1.4 12.5 21.1 1.0	-27.1 -11.1 - 7.7 - 8.7	1.4 11.7 15.2 0.7	1 1 8 28	0 0 0 1 —	1 3 5 2 —	1 1 3 0	0 1 1 0 	0 1 1 0 —	0 0 0	000
anta	1.9	1.7	3.7	1.4	2.2	0.0	-4.2	0.0		o	0	0	0	0	0	; •
airo (A)	1.4	4.1	3.0	2.3	2.8	0.0	_ 2.7	0.0	_	0	0	0	0	Ú	•	0
ayoum (A) asyout (A) uxor (A)	1.2 0.6 0.5 0.4	2.0 2.6 1.3 1.3 1.0	2.4 1.9 1.0 1.7 1.7	2.2 1.1 1.1 1.8 0.5	1.6 0.9 1.1 1.0	0.0 0.0 0.0 0.0 0.0	- 0.5 - 0.2 - tr, - 0.1 - tr.	0.0 0.0 0.0 0.0 0.0	1111	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	9 9 9 0	•
wa	0.9 1.2 — 1.4 0.3	1.9 2.0 1.3. 1.1 1.0	4.8 2.7 2.7 1.0 1.5	1.2 1.1 1.3 0.6 0.7	2.2 1.8 — 1.0 0.9	0.0 0.0 0.9 0.0 0.0	0.6 0.6 +- 0.8 tr. 0.1	0.0 0.0 0.9 0.0 0.0	- 1 -	0 0 0 0	0 0 1 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0
or	0.8 0.7	1.6 1.8	2.0 2.3	0.9 1.0	- 1.4 1.4	0.0 0.0	- 0.2 - 1.9	0.0		- 0 0	- 0 0	- 0 0	_ 0 0	 0 0	_ 0 0	0

j 01 1

Table A 4.—DAYS OF OCCURRENCE OF MISCELLANEOUS WEATHER PHENOMENA

NOVEMBER - 1969

		Precip	itation				etre				50 e	# •			
Station	Rain	Snow	Ice. Pellets	Hail	Frost	Thunderstorm	Mist Vis ≥ 1000 metres	Fog Vis	Haze Vis	Thick Haze Vis	Dust or Sandrising Vis ≥1000 Metres	Dust or Sandstorm Vis <1000 Metres	Gale	Clear Sky	Cloudy Sky
Sallum. Merca Matruh. (A) Alexandria. (A) Port Said. (A) El Arish	1 3 5 - 2 	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 5 0 -	0 0 2 0 -	0 0 1 0	0 0 0	1 0 2 0	0 0 0 0 —	0 0 0 •	3 3 0 —	2 2 1 —
Tanta	0	0	0	0	0 0	0	6 6	2	0 5	o	0	0	0	 12	_ 0
Fayoum (A) Minya (A) Assyout (A) Luxor (A) Aswan (A)	0 0 0 0	0 0 0 0 6	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 12 4 0	0 0 1 0	0 2 0	0 0 0 0	0 1 1 0 3	0 0 0 0	0 0 0 0	21 25 24 24	• • • •
Siwa	0 0 1 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 1 0	0 0 0 0	0 0 0 0	15 20 21 25	0 0 0
Tor	- 0 0	0	0	0	- 0 0		0	0	0	0	 7 0	0 0	 0	 22 19	

Table A 5.—NUMBER IN HOURS OF OCCURRENCES OF CONCURRENT SURFACE WIND SPEED AND DIRECTION RECORDED WITHIN SPECIFIED RANGES

NOVEMBER - 1969

	(848	ars)	hours)			Nu	mber	in h					windica		wing	from	the
Station	Calm (hours)	Variable (hours)	Unrecorded (hours)	Wind speed in knots	345 / 014	1/	045 / 074	075 / 104	105 / 134	135 / 164	165 / 194	195 / 224	225 / 254	255 / 284	285 / 314	\perp_{I}	All directions
Sallum	1	0	0	1 ~10 11— 27 28—47 ≥ 48 All speeds	73 1 0 0 74	50 2 0 0 52	67 4 0 0 71	20 0 0 0 20	7 0 0 0 7	2 0 0 0 2	7 0 0 0 7	18 1 0 0 19	35 16 0 0 51	44 21 0 0 65	114 50 0 0	142 45 0 0 187	579 140 0 0 719
Mersa Matruh. (A)	7	2	0	1—10 11—27 28—47 ≥ 48 All speeds	129 14 0 0 143	97 7 0 0 104	11 0 0 0 11	16 0 0 0 16	9 0 0 0	18 0 0 0 18	37 3 0 0 40	65 8 0 0	99 20 0 0	69 15 0 0 84	22 8 0 0 30	40 24 0 0 64	612 99 0 0 711
Alexandria (A)	5	0	0	1—10 11—27 28—47 ≥ 48 All Speeds	162 24 0 0 83	41 4 0 0 45	22 0 0 0 22	14 0 0 0 14	15 0 0 0 15	25 0 0 0 25	30 0 0 0 30	12 5 0 0	9 3 0 0	40 17 0 0 57	58 19 0 0	181 34 0 0 215	609 106 0 0 715
Port Said (A)	0	0	0	1—10 11—27 28—47 ≥ 48 All speeds	151 92 0 0 243	83 37 0 0 120	20 0 0 0 20	9 0 0 9	11 0 0 0	3 0 0 0 3	10 4 0 0	26 2 0 0 28	71 8 0 0 79	31 7 0 0 38	41 21 0 0 62	81 12 0 0 93	537 183 0 0
Tauta	37	0	444	1—10 11—27 28—47 ≥ 48 All speeds	25 0 0 0 25	0 0 0 0	0 0 0 0	0 0 0 0	3 0 0 0 3	5 0 0 0 5	32 0 0 0 32	20 0 0 0	26 0 0 0 0	39 0 0 0 39	36 0 0 0 36	53 0 0 0 53	239 0 0 0 239
Cairo (A)	132	2	1	1—10 11—27 28—47 ≥ 48 All speeds	18 0 0	142 93 0 0 235	81 5 0 0 86	36 0 0 0 0 36	4 0 0 0 4	1 2 0 0 3	24 6 0 0 30	20 8 0 0 28	21 1 0 0 22	18 3 0 0 21	26 3 0 0	30 4 0 0 34	442 143 0 0 585
Fayoum	24	0	0	11—27 28—47 ≥ 48	384 7 0 0 391	117 45 0 0 162	7 0 0 0	4 0 0 0 4	1 0 0 0 1	1 0 0 0	10 0 0 0	11 0 0 0 11	24 0 0 0 0 24	11 0 0 0 11	16 0 0 0	58 0 0 0 58	644 52 0 0 696
Minya	61	0	0	11—27 28—47 ≥ 48	452 115 0 0 567	19 11 0 0 30	0 0 0 0	0 0 0 0	0 0 0 0	1 0 0 0 1	6 0 0 0 6	4 0 0 0 4	5 0 0 0 5	6 0 0 6	4 0 0 0 4	36 0 0 0 36	533 126 0 0 659
Assyout	3	0	0	1—10 11—27 38—47 ≥ 48 All speeds	2 1 0 0 3	1 0 0 0	1 0 0 0	3 0 0 0 3	7 0 0 0 7	2 0 0 0	1 0 0 0 0	1 0 0	1 0 0	54 0 0	108 64 0 0	23 47 0 0	549 168 0 0 717

Table A 5. (contd.)—NUMBER IN HOURS OF OCCURRENCES OF CONCURRENT SURFACE WIND SPEED AND DIRECTION RECORDED WITHIN SPECIFIED RANGES

NOVEMBER — 1969

	ra)	Variable (hours)	Unrecorded (hours)	Wind speed in knots	Mumber in hours of occurrences of wind blowing from the ranges of directions indication												
Station	Calm (hours)				345 / 014	015 / 044	045 074	075 / 104	105 / 134	135 / 164	165 / 194	195 / 224	225 / 254	255 / 284	285 314	315 / 344	All directions
Luxor (A)	9	8	2	1—10 11—27 28—47 ≥ 48 All speeds	25 0 0 0 25	17 0 0 0 17	10 0 0 0 10	21 0 0 0 21	21 0 0 0 21	79 0 0 0 79	160 0 0 0 160	41 0 0 0 41	54 0 0 0 54	0 0	114 13 0 0	58 1 0 0 59	687 14 0 0 701
A swan (Δ)	0	1	1	1—10 11—27 28—47 ≥ 48 All speeds	463 62 0 0 525	110 11 0 0 121	7 0 0 0 7	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	1 0 0 0 1	60 4 0 0 64	641 77 0 0 718
Siwa	35	U	2	1—10 11—27 28—47 ≥ 48 All spreds	53 0 0 0 53	59 0 0 0 59	75 0 0 0 0 75	28 0 0 0 28	28 0 0 0 28	46 0 0 0 46	32 0 0 0 32	26 0 0 0 26	29 0 0 0 29	82 0 0 0 82	123 2 0 0 125	100 0 0 0	681 2 0 0 681
Dakhla	10	0	()	I-10 11-27 28-47 > 48 All speeds	67 20 0 0 83	8 0 0 0 8	9 0 0 0 9	3 0 0 0 3	1 0 0 0	4 0 0 0 4	0 0 0 0	19 0 0 0 19	39 0 0 0 39	109 0 0 0 109	169 0 0 0 169	203 48 • 0 0 251	642 68 0 0 716
Kharga	3	0	0	1-10 11-27 28-47 ≥ 48 All speeds	223 201 0 0 424	(6 6 0 0 72	14 0 0 0 14	5 0 0 0 5	3 0 0 0 3	3 0 0 0 3	2 0 0 0 2	3 0 0 0 3	3 0 0 0 3	5 0 0 0 5	21 0 0 0 21	139 23 0 0	487 230 0 0
Hurghada	11	0	0	1—10 11—27 28—47 ≥ 48 All speeds	27 112 0 0 139	16 0 0 0 16	4 0 0 0 4	2 0 0 0 2	1 0 0 0	0 0 0 0 0	0 0 0 2	1 0 0 0	2 0 0 0 2	4 9 0 0 13	59 196 0 0	20 252 2 0 274	138 569 2 0 709
Quaeir	3	0	3	1—10 11—27 28—47 ≥ 48 All speeds	38 224 0 0 262	40 34 0 0 74	11 0 0 0 11	6 0 0 0 6	0 0 0 0	1 0 0 0	2 0 0 0 2	2 0 0 0	5 0 0 0 5	8 0 0 0 8	108 0 0 0 108	174 61 0 0 235	395 319 0 714

UPPER AIR CLIMATOLOGICAL DATA

Table B 1.—MONTHLY MEANS AND MONTHLY ABSOLUTE HIGHER & LOWER VALUES OF ALTITUDE, AIR TEMPERATURE & DEW POINT AT STANDARD AND SELECTED PRESSURE SURFACES

NOVEMBER - 1969

Station	Pressure Surface	Alt	titude of Pro	essure Surfa	ce (gpm)		Temp	Dew	Dew Point (°C)		
Sta	(Millibar)	N	Mean	Highest	Lowest	N	Mean	Highest	Lowest	N	Mean
Mersa Matruh (A) 0000 U.T.	Surface 1000 850 700 600 500 400 300 270 200 150 100 70 60 50 40 30 20 10	29 29 29 27 27 26 26 25 19 15 10 8 4 4 2 1	* 1016m.b. 162 1536 3132 43 7 5777 7428 9445 10648 12082 13879 16327 18470 19432 20572 21859 23659 26238	* 1020 m,b. 198 1584 3178 4417 5850 7525 9564 10784 12204 13949 16398 18,590 19531 20671	# 1067m.b. 89 1476 3030 4278 5672 7298 9292 10502 11942 13761 16225 18340 19347 20473 — — — — —	29 29 29 27 27 26 26 25 19 15 10 8 4 4 2 1	17.3 18.3 9.6 3.5 -3.9 -14.5 -26.7 -42.2 -50.4 -58.6 -65.2 -66.8 -64.2 -60.2 -60.7 -59.0 -52.8	21.0 22.0 15.7 7.3 0.0 -10.8 -22.8 -39.6 -47.8 -53.0 -61.2 -57.7 -61.6 -61.2 -58.5	13.1 15.0 4.8 - 4.0 - 8.6 -18.8 -30.5 -45.6 -55.2 -62.5 -71.5 -70.7 -66.1 -63.3 -62.0	29 29 29 27 26 26 25 22 16 7 ——————————————————————————————————	18.9 14.1 2.8 -9.2 -16.8 -26.6 -37.0 -50.9 -58.4 -64.3
Helwan 0000 UT	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	30 30 30 30 30 30 29 27 25 25 23 19 18 13	** 1001m.b. 151 1525 31::4 4361 5773 7434 9449 10662 12090 13871 16325 18488 19473 205::3 22055 23796 26487	**************************************	996m.b. 114 1488 3)84 4306 5711 7367 9362 10558 11960 13720 16175 18357 19300 20428 21910 23630 26292	30 24 30 30 30 30 30 29 27 25 25 23 19 18 13 12 5	16.8 16.4 11.6 3.9 	18.2 23.6 15.2 7.0 — 1.1 —10.8 —21.7 —33.9 —46.3 —52.7 —61.4 —64.9 —57.7 —53.8 —54.0 —53.1 —51.0 —47.8	13.5 12.1 5.8 0.4 7.9 17.4 30.2 45.3 54.2 62.8 69.3 72.0 68.1 65.7 62.0 60.4 58.4 51.5	30 24 30 30 30 30 29 28 14 ———————————————————————————————————	12.7 12.81.516.823.131.340.953.561.967.0
A6Wan (A) 0000 UT	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	30 30 30 30 30 30 30 30 29 26 24 24 17 13 12 9 7 2	991m.b. 116 1515 3140 4395 5833 7523 9581 10805 12254 14043 16478 18605 19549 20670 2 2065 2 3915 2 6528	993m.b. 133 1538 3184 4448 5898 7600 9698 10904 12338 14117 16573 18080 19590 20716 22118 23941 26563	988m.b. 90 1493 3102 4336 5732 7398 9455 10394 12138 13940 16409 18380 19491 20596 21978 23860 26494	30 30 30 30 30 30 29 26 26 24 17 13 12 9 7 2	18.6	21.3 	16.0 	30 30 30 30 30 30 29 26 24 	6.7 -0.6 -13.9 -19.7 -28.0 -37.4 -48.6 -57.7 -64.9

N = The number of cases the element has been observed during the month.

^{*} The atmospheric pressure corrected to the elevation of the radiosonde station.

UPPER AIR CLIMATOLOGICAL DATA

Table B 1.(contd.)—MONTHLY MÉANS AND MONTHLY ABSOLUTE HIGHER & LOWER VALEUS OF ALTITUDE, AIR TEMPERATURE & DEW POINT AT STANDARD AND SELECTED PRESSURE SURFACES

NOVEMBER - 1969

noi	Presure	Alt	titude of Pro	essure Surfa	ce (gpm)	·	Tempe	rature (°C)		De	w point (°C)
Station	Surface (Millibar)	N	Mean	Highest	Lowest	N	Mean	Highest	Lowest	N	Mean
Mence orth (A) 1200 UT	Surface 1000 850 700 600 50) 40) 300 2:0 200 150 100 70 60 50 40 30 20	30 30 30 30 30 30 29 26 23 18 12 6 3 3 2 1	1015m.b. 100 1535 3132 4366 5779 7447 9446 10865 12097 13873 16346 18510 19159 20635 22087 —	* 1020m.b. 200 1531 3171 4408 5836 7512 9561 10787 12213 14019 16528 18570 19516 20 467 — — — —	* 1008m.b. 104 1488 3073 4297 5700 7331 9321 10517 11933 13730 16212 18460 19408 20603 — — — — —	30 30 30 30 30 30 29 26 23 18 12 6 3 3 2 1	21.6 29.1 9.9 3.3 -4.0 -14.2 -26.4 -41.7 -50.5 -59.1 -64.3 -67.0 -62.3 -59.4 -56.7 -55.3	25.0 23.3 13.9 7.7 0.9 11.4 23.0 38.1 46.6 52.3 60.1 64.0 69.8 58.6 56.4	18.3 16.8 3.9 6.5 8.7 17.5 30.5 44.9 54.1 62.9 71.5 64.5 60.7 57.0 	30 30 30 30 30 30 29 29 23 14 8 —	14.9 13.4 1.6 — 8.2 —15.7 —24.3 —36.4 —51.0 —58.5 —65.1 —
Helwan 1200 UT	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	30 30 30 30 30 20 27 27 27 27 25 23 18 17 16 13	1000 m.b. 142 1530 3437 4378 5798 7161 9481 10097 12132 13019 16391 18576 19565 20686 22172 23964 20629	* 1003m.b. 166 1561 3183 4442 5876 7568 9520 10849 1:282 14947 16512 18650 19050 20750 22270 24070 25710	# 995m.b. 98 1498 3101 4330 5741 7397 9396 10588 12602 13794 16238 18505 19460 20596 22040 23816 26162	30 22 30 30 30 29 28 27 27 27 25 23 18 17 16 13	24.0 23.5 12.2 4.9 - 2.6 -12.7 -25.3 -40.8 -49.5 -57.6 -63.6 -66.5 -62.3 -60.3 -57.6 -57.6 -54.6 -50.7 -47.4	26.6 26.3 16.6 9.7 0.19.521.046.251.860.261.559.756.754.051.946.313.0	20.1 19.9 7.4 1.1 -5.5 -18.5 -28.8 -45.4 -54.1 -62.0 -68.6 -71.1 -65.5 -64.0 -63.5 -58.4 -53.3 -51.0	30 22 30 30 30 29 28 26 25 20 —————————————————————————————————	10.2 9.6
Aswan 1200 UT	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	30 30 30 20 29 28 28 27 27 26 25 19 13 12 7 6 5	990m.b. 107 1516 3145 4401 5842 7528 9593 10835 12291 14089 16409 18693 19613 20799 22177 24045 26689	* 993m.b. 141 1539 3171 4139 58.65 7595 9690 16956 12438 1:266 16756 18980 19881 21035 22361 24251 27002	987m.b. 79 1457 3080 4335 5738 7404 9456 10697 12152 13966 16395 18530 19276 20589 22006 23854 26516	30 30 30 29 28 28 28 27 26 25 19 13 12 7 6 5	28.8 	33.0 -21.4 13.6 4.3 -50 -16.3 -31.0 -41.1 -51.5 -58.8 -64.1 -62.5 -59.4 -53.3 -50.1 -41.4 -37.7	24.5 12.2 3.5	30 30 30 29 29 28 28 27 26 1	8.1 — 1.6 —14.2 —20.7 —28.2 —38.2 —50.8 —58.2 —66.3 —70.7

N = The number of cases the element has been observed during the month.

^{*} The atmospheric pressure corrected to the elevation of the radiosonde station.

Table B 2.—MEAN AND EXTREME VALUES OF THE FREEZING LEVEL AND THE TROPOPAUSE; THE HIGHEST WIND SPEED IN THE UPPER AIR

NOVEMBER — 1969

					Fre	ezing L	evel							First	Tropo	pause				High	hest	wind	speed
			Mean			Highes	t		Lowest	;		Mean			Highe	st	!	Lowes	t	(m	ıb.)	0	ote
	Station	Altitude (£J'm)	Pressure (mb.)	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Dew point	Altitude (gpm)	Речение (т.н.)	Dew point (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (m').)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Temperature (°C)	Altitude (gpm)	Pressure (mb.)	Direction (000—360)°	Speed in Knots
		(N)	(N)	(N)							(N)	(N)	(N)						**************************************				
	Mersa Matruh (A)	3541 (27)	678 (47)	-11.5 (26)	4417	600	-24.2	22 90	772	-2.5	13526 (S)	161 (8)	-65.2 (8)	15470	116	_68.0	11810	204	_56.4	7690	380	280	110
0000 U.T.	Helwan	342 6 (30)	647 (30)	-24.8 (30)	423 0	614	_	2840	724	-4.2	1480s (14)	150 (24)	66.3 (24)	16230	101	-69.5	12000	202	61.1	9450	304	255	162
0	Aswan (A)	4 510 (3 ∂)	595 (30)		5 580	585	-20.2	3130	673	-18.3	15823 (19)	113 (19)	-70.7 (10)	1793	79	_72.1	14 059	150	64.1	10850	250	324	120
		(N)	(N)	(N)							(N)	(N)	(N)					:					i
	Mersa Matruh (A)	3375 (30)		11.0 (30)	42 00	615	- 9.6	2700	738	-6.7	128 37 (9)	183 (9)	61.6 (9)	14830	129	<u>66.0</u>	9120	314	-4 2.1	13180	164	290	122
1200 U.T.	Helwan	39 3] (30)	635 (3 0)	-20,2 (3 9)	4442	6 00	15.0	3 290	686	19.7	13598 (23)	161 (23).	63.8 (-3)	16412	100	05.5	11440	224	-56.5	10275	264	235	150
1	Aswan (A)	4612 (29)	586 (29)	-21.3 (29)	5130	550	—2 2.8	3670	654	22.1	15588 (20)	120 (20)	-49.2 (20)	17720	82	7 5.0	12100	204	—60. 0	12 50 0	194	252	117

N = The number of cases the element has been observed during the month.

Table B 3.—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES

MERSA MATRUH (A) - NOVEMBER 1969

_					Wind	between sp	ecified ra	nges of dire	ection (000	36 0)*				l _s	125	9
Tim•	Pressure Surface Millibar	014	015	045	075	105	135 / 164	165	195 / 22	225 / 254	255 / 284	295 / 314	315 / 344	Number of oslm winds	Total number of observations (TN)	soslar wind
·		N (ff)	N (ff)	N (ff) m	N (ff)	N (ff) m	N (ff)	N (ff)	N ff)	N (ff) m	N (ff)	N (ff) m	N (ff)	Num	Total observe	Mean
0000 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 43 30 20 19	2 12 2 6 3 11 1 7 0	3 7 1 10 0	0	1 6 0 - 1 1 1 1 1 0 - 1 1 3 1 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0	3 11 0 0 0 0 0 0 0 0	4 8 8 0 — 1 11 0 — 0 — 0 — 0 — 0 — 0 — 0 — 1 21 0 — — — — — — — — — — — — — — — — — —	6 8 1 26 0 - 1 1 41 0 - 0 0 0 0 0	2 16 1 3 1 2; 1 9 1 41 2 44 0	0	3	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	29 9 9 7 7 7 6 6 5 4 4 2 1	7 13 11 16 17 26 32 37 40 42 43 18 13 21 22 —
1200 U.T.	Surface 1000 850 700 690 500 400 300 250 200 150 70 60 50 40 30 20 10	1 19 0 —	0 —	1	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	1 16 0 - 0 0	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	-	1 102	2 12 4 14 4 14 8 22 5 37 5 60 4 83 5 67 3 30 	11	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 25 24 24 23 23 23 19 18 15 15 17 3 1	9 11 10 13 18 24 35 53 60 67 53 40 30 —	

N = The number of cases the wind has been observed from the range of direction during the month.

TN = The total number of cases the wind has been observed for all directions during themonth.

Table B & (contd.) .- NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES

HELWAN-NOVEMBER 1969

		1	-				w	ind 1	betwe	en sp	ecifie	d ran	ges of	direc	etion (0	00	360)*						calm	er of (TN)	p qi
Time	Pressure Surface Millibar	34 / 01	- 1	01 / 04	Ì	045 / 074	07		1	05 / 34	1	35 / 64	16		195 / 224		225 / 254		255 / 284	1	35 	315 / 344	Jo Sp		lean scalar wind speed (knots)
		N	(ff) m	N	(ff) m	N (ff) m	N	(ff) m	N	(ff) m	N	(ff) m	N	(ff) m	N	ff) m	N	en	N (ff)	N	(ff) m	N (ff m	Num	Total numb	Mean
0000 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	12 10 3 8 2 2 1 1 1 1 0 0 0 0 0	7 8 15 16 14 18 32 34 50 18 — — — — — — — — — — — — — — — — — —	7 7 5 2 1 2 1 1 0 0 0 0 0 0 0 1 - - -	12 19 18 10 12 15 29 52 ————————————————————————————————	2 6 3 12 5 10 0 — 1 22 2 28 1 30 1 22 0 — 0 —	0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 6 6 14	-		000000000000000000000000000000000000000		0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14 12 12 12	0	8	0 4 6 5 5 5 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6	51 1 223 1 31 1 51 1 27 - - -	0 — 0 1 8 3 7 11 27 11 29 13 544 7 75 5 55 8 58 7 44 3 44 0 — 1 15 0 —	3 2 4 6 5 3 4 5 5 4 2 1 1 2 0 0 0 0 —	5 10 18 24 15 18 40 41 63 61 49 18 16 9	$\begin{array}{ccc} 2 \\ 2 \end{array}$	7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 24 30 30 30 29 28 21 18 12 10 9 5 2 2 1 1	7 12 13 15 22 29 43 59 65 56 40 37 9 12 19 11 ———
1200 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	11 8 6 7 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- - -	8 5 7 4 4 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26 — — — —			9 144 333	1	6	0		1 0 2 1 0 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 6 8 41 ——————————————————————————————————	0 0 0 1 0 1 0 0 0 0 0 0 0 0	5 43	0 3 2 3 6 4 3 3 2 0 0 0 0 0	38 71	3 5 6 16 17 18 18 18 18 18 18 18	3 3 5 7 5 7 2 1 2 2 1 0	8 7 8 13 18 19 36 54 46 38 46 20 ———————————————————————————————————	4 1 1 3 3 2 2 0 2 7 7 2 7 0 0 0 1 2 2	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 22 30 30 29 26 24 19 13 11 7 2 2 2 2	11 11 10 13 19 27 38 66 58 55 50 48 16 21 10 12

N - The number of cases the winds has been observed from the range of direction during the month.

TN - The total number of cases the wind has been observed for all directions during the month.

SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES

ASWAN (A) — NOVEMBER — 1969

		 			Win	nd between	n ranges o	f direction	1 (000366))*				calm	er of (TN)	wind ote)
a	Pressure Surface	345	015	045	075	105	135	165	195	225	255	285	315		number ations (T	an scalar wind
Tim.	Millibar	014 (ff)	044 (ff)	074 (ff)	104	134	164	194	224	254	284	314	344	ther of winds	l nur) pos
		N m	N m	N m	N (ff)	N (ff)	N m	N (ff) m	$\left \begin{array}{c}\mathbf{N}\end{array}\right _{\mathbf{m}}^{(\mathbf{ff})}$	N (ff)	N (ff)	N (ff)	N (ff)	Number win	Total numbobservations	Mean *pc
0000 U.T.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20 10	27	8 9 2 8 1 4 0 — 0 — 0 —	0 -	0 - 0 - 1 18 0 - 1 11 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	0 — 1 3 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 —	0 - 1 3 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	0	0 - 1 2 0 - 0 - 0	0 1 1 1 5 8 6 15 6 31 6 46 4 62 3 78 1 58 2 63 2 44 1 10 0 1 25 0 0	0 - 0 8 22 8 30 15 28 15 30 17 48 15 56 16 71 14 60 13 39 7 19 5 11 1 10 3 21 0 1 8	0 — 3 7 7 15 11 18 7 20 5 42 6 50 4 56 5 67 7 62 3 33 1 9 2 14 0 — 0 — 0 — - —	2 8 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 30 30 30 30 30 30 29 26 23 18 10 9 7 5 2 1	8 -9 13 19 26 40 49 59 68 61 39 18 12 13 17 16 8
1200 U.T.	Surface 1000 850 700 600 500 400 300 150 100 70 60 50 40 30 150 100 100 100 100 100 100 10	17	8 8 9 10 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	2 8 7 9 1 7 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0	0 — 1 2 1 10 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0 — 0	0 — 2 4 2 9 0 — 6 — 6 — 6 — 6 — 6 — 7 1 17 0 1 — 0 — 7 0 — 7 0 — 7 1 15 — 6 — 7 1 15 — 6 — 7 1 15 — 6 — 7 1 15 — 6 — 7 1 15 — 7	0 3 7 7 19 5 32 4 44 6 54 3 76 1 111 0 - 1 24 0 - 1 5 1 20 0	0	1 8 2 12 8 12 7 13 3 25 10 38 8 46 7 53 5 76 8 70 8 28 1 17 1 21 0 — 0 — 0 — 0 — — — —	2 6 	0 	30 30 30 10 29 28 28 27 27 25 20 9 4 2 2 1	9

N = The number of cases the element has been observed during the month.

TN = The total number of cases the wind has been observed for all directions during the month.

REVIEW OF AGRO-METEOROLOGICAL STATIONS

MERSA MATRUH - NOVEMBER 1969

This month as a whole was less rainy and slightly cooler than normal. The total monthly rainfall was 12.5 mm. against 23.6 mm. for normal. The daily maximum air temperatures were below normal most of the month. The lowest maximum air temperature for the month was 20.0°C reported on the 29th. Two light warm spells occurred during the periods (9th 10th) and (25th 27th). The second warm spell yielded the highest maximum air temperature for the month (25.3°C) and the lowest relative humidity (40 %) on the 27th.

The daily mean actual duration of bright sunshine was 0.7 hour less than the corresponding value of El Kasr in November 1968.

TAHRIR — NOVEMBER 1969

This month as a whole was slightly warmer than last November and rainless. The daily maximum air temperatures were slightly below average most of the month. Two light warm spells occurred on the I st and during the period (26th - 28th). The first warm spell yielded the highest maximum air temperature for the month (28.8°C). The second warm spell yielded the lowest relative humidity (30°/o) on the 28th.

The extreme maximum soil temperatures were lower than the corresponding values of last November at shallow depths between 2,10 cm. with differences varying between 3.9°C at 2 cm. and 0.9°C at 10 cm. At deeper depths between 20,100 cm. the extreme soil maxima were higher than last November with small differences varying between 0.1°, 0.9°C. The extreme minimum soil temperatures were higher than the corresponding values of last November at all depths, and the differences varied between 4.5°C at 2 cm. and 1.3°C at 100 cm.

The daily mean Pan evaporation was slightly more (0.04 mm.) than the corresponding value of November 1968. The daily mean actual duration of bright sunshine was 0.2 hour less than the corresponding value of November 1968.

BAHTIM - NOVEMBER 1969

This month as a whole was slightly warmer than last November and rainless. The daily maximum air temperatures were slightly below average most of the month. Four light warm spells occurred on the I st and during the periods (16-th - 17th), (22nd - 23th) and (26th - 28th). The first warm spell yielded the highest maximum air temperature for the month (27.5°C). The last warm spell yielded the lowest relative humidity (33°/o) on the 28th.

The extreme maximum soil temperatures were lower than the corresponding values of last November at shallow depths between 2, 10 cm. with differences varying between 3.1°C at 2 cm. and 0.8°C at 10 cm. At deeper depths between 20, 100 cm. the extreme soil maxima were slightly higher (0.6° to 0.7°C) than last November. The extreme minimum soil temperatures were higher than the corresponding values of last November at all depths, and the differences varied between 2.3°C at 10 cm. and 0.3°C at 100 cm.

The delig mean Pan evaporation was slightly less (0.01 mm.) than the corresponding value of November 1968. The daily mean actual duration of bright sunshine was the same as for November 1968.

KHARGA - NOVEMBER 1969

This month as a whole was slightly warmer than average. Three warm spells were experienced during the periods (Ist-2nd), (19th-21st) and (24th-28th), otherwise the daily maximum air temperatures were below average. The first warm spell yielded the highest maximum air temperature for the month (32.3°C) and the lowest relative humidity (21 %) on the 1st.

The extreme maximum soil temperatures were higher than the corresponding values of last November at all depths, and the differences varied between 2.8°C at 2 cm. and I.6°C at 100cm. The extreme minimum soil temperatures were also higher than the corresponding values of last November at all depths, and the differences varied between 3.6°C at 5 cm. and 0.7°C at 100 cm.

The daily mean Pan evaporation was 0.49 mm, more than the corresponding value of November 1968. The mean daily actual duration of bright sunshine was the same as for November 1968.

Table C 1. — AIR TEMPERATURE AT 1½ METRES ABOVE GROUND
NOVEMBER — 1969

STATION		Air T	emperat	ure (°C)				Mean			urs of			rature		
	Mean Max.	Mean Min,	Mean of the day	1	Day time mean	5°C	0°C	5°C	10°C	15°C	20°C	25°C	30°C	35°C	40°C	45°C
				1			1				1		1			
Mersa Matruh	22.8	14.2	18.3	16.6	20.2	24.0	24.0	24.0	24.0	20.8	7.3	0.0	0.0	0.0	0.0	0.0
Tahrir	25.4	12.7	18.2	15.2	21.3	24.0	24.0	24.0	23.9	17.1	8.5	0.4	0.0	0.0	0.0	0.0
Bahtim	25.1	10.8	17.7	14.7	20.8	24.0	24.0	24.0	23.6	15.7	7.8	0.8	0.0	0.0	0.0	0.0
Kharga	27.8	14.0	21.0	18.4	23.8	24.0	24.0	24.0	24.0	21.8	13.7	5.5	0.2	0.0	0.0	0.0

Table C 2 - EXTREME VALUES OF AIR TEMPERATURE AT 1½ METRES ABOVE GROUND, ABSOLUTE MINIMUM AIR TEMPERATURE AT 5cm3 ABOVE GROUND OVER DIFFERENT FIELDS

NOVEMBER - 1969

	Max.	Temp. at	1½ metr	es (°C')	Min.	remp. at	1½ metre	es (°C)	Min. T	Temp. at	5 cms, ab	ove (°C)
STATION	Hig	ghest	Lo	west	Hig	ghest	Lo	west	Dry	soil	G	1888
	Value	Date	Value	Date	Value	Date	Value	Date	Value	Date	Value	Date
Mersa Matruh	25.3	27	20.0	29	18.0	22	11.0	30	7.5	30		_
Tahrir	28.8	l l	21.9	30	15.3	2	9.6	19,30	6.6	19	-	<i>-</i> ≓
Bahtim	27.5	1	21.4	3:)	14.8	1	7.6	30	4.3	30	_	_
Kharga	32.3	1	22.7	30	17.8	7	9.6	29	7.1	29	_	_

Table C 3. SOLAR+SKY RADIATION, DURATION OF BRIGHT SUNSHINE, RELATIVE HUMIDITY, VAPOUR PRESSURE AT 15 METRES ABOVE GROUND, EVAPORATION & RAINFALL

NOVEMBER -- 1969

×	Radia- /em²		ion of hime (h		Re	lativ	Hu	midity		Vaj	our j	ressure	(mms)	Еуарог (тг		Rai	nfall (m	ms)
STATION	(Solar+Sky) tion gm. cal	Total Actual monthly	Total Possible monthl	0,0	Mean of day	1200 U.T.	Lowest	Date	Mean of day	1200 U.T.	Highest	Date	Lowest	Date	Piche	Pan class (A)	Total Amou- nt Monthly	Max. Fall in one day	Date
																ļ			
dersa Matruh	261.8	243.6	316.9	77	73	61	40	27	11.4	11.7	14.4	1	6.7	30	5.6	5.66	12.5	11.7	1
Cahrir	333,6	256.8	318.7	81	77	52	30	28	11.7	11.6	14.7	17	7.7	1	4.8	4.51	0.0	0.0	
ahtim	319.7	234.6	319.8	73	74	48	33	28	10.9	11.0	14.3	22	7.7	19	5.4	4.37	0.0	0.0	_
Kharga	356.6	306.5	328.0	93	47	32	21	1	8.6	8.6	11.4	21	4.7	29	12.5	9.80	0.0	0.0	

TABLE C 4 EXTREME SOIL TEMPERATURE AT DIFFERENT DEPTHS IN DIFFERENT FIELDS

NOVEMBER — 1969

t (H)	E	xtreme		-				eld	Ex	tremo		_			-	iold
Highe Lawes	2	5	10	20	50	100	200	300	2	5	10	20	50	100	200	300
H L					21,2 19,4	22.8 21.1					_	-	_		_	=
H L	33 9 14.1								_	_	-	 		_	_	_
អ ៤	35.7 12.4							26.7 26.4	_	_		-	_	_	_	
H L	41.0 12.0							30.4 30.1	_	_	-	_	_		_	-
	Highert Hr Hr Hr Highert Luwest	H 27.1 L 13.1 H 33.9 L 14.1 H 35.7 L 12.4 H 41.0	H 27.1 24.3 L 13.1 13.9 H 33.9 30.8 L 14.1 14.2 H 35.7 30.8 L 12.4 14.1 H 41.0 35.6	at diff 2	at different of the state of th	at different depths Color	H 27.1 24.3 21.9 20.6 21.2 22.8 L 13.1 13.9 15.2 17.2 19.4 21.1 H 33.9 30.8 27.8 25.9 25.5 26.4 L 14.1 14.2 15.6 18.3 21.3 23.1 H 35.7 30.8 27.3 26.7 27.5 23.0 L 12.4 14.1 17.5 20.9 23.7 25.1 H 41.0 35.6 31.0 29.3 30.2 31.3	at different depths (cms.) At 3 2 5 10 20 50 100 200 H 27.1 24.3 21 9 20.6 21.2 22.8 24.2 L 13.1 13.9 15.2 17.2 19.4 21.1 22.6 H 33 9 30.8 27.8 25.9 25.5 26.4 27.2 L 14.1 14.2 15.6 18.3 21.3 23.1 24.8 H 35.7 30.8 27.3 26.7 27.5 23.0 27.7 L 12.4 14.1 17.5 20.9 23.7 25.1 26.3 H 41.0 35.6 31.0 29.3 30.2 31.3 31.1	H 27.1 24.3 21 9 20.6 21.2 22.8 24.2 — L 13.1 13.9 15.2 17.2 19.4 21.1 22.6 — H 33.9 30.8 27.8 25.9 25.5 26.4 27.2 27.5 L 14.1 14.2 15.6 18.3 21.3 23.1 24 8 25.9 H 35.7 30.8 27.3 26.7 27.5 23.0 27 7 26.7 L 12.4 14.1 17 5 20.9 23.7 25.1 26.3 26.4 H 41.0 35.6 31.0 29 3 30.2 31.3 31.1 30.4	at different depths (cms.) A T T T T T T T T T T T T T T T T T T T	at different depths (cms.) H 27.1 24.3 21 9 20 6 21.2 22.8 24.2 — — L 13.1 13.9 15.2 17.2 19.4 21.1 22.6 — — H 33 9 30.8 27.8 27.8 25.9 25.5 26.4 27.2 27.5 — — — L 14.1 14.2 15.6 18.3 21.3 23.1 24.8 25.9 — — H 35.7 30.8 27.3 26.7 27.5 23.0 27.7 26.7 — — L 12.4 14.1 17.5 20.9 23.7 25.1 26.3 26.4 — — H 41.0 35.6 31.0 29 3 30.2 31.3 31.1 30.4 — —	at different depths (cms.) At different depths at different depths At different depths at different depths	at different depths (cms.) At different At different <td>at different depths (cms.) at different depths 2 5 10 20 50 100 200 300 2 5 10 20 50 H 27.1 24.3 21 9 20.6 21.2 22.8 24.2 —</td> <td>at different depths (cms.) At different depths (cms.)</td> <td>at different depths (cms.) at different depths (cms.)</td>	at different depths (cms.) at different depths 2 5 10 20 50 100 200 300 2 5 10 20 50 H 27.1 24.3 21 9 20.6 21.2 22.8 24.2 —	at different depths (cms.) At different depths (cms.)	at different depths (cms.) at different depths (cms.)

TABLE C 5.—SURFACE WIND

NOVEMBER — 1969

		d Speed 1 l½ met.e			Days wit	h surface	wind spe	ed at 10	metres,	_	Max. Gu at 10 r	st (knots) netres
8TATION	Mean of the lay	Night time mean	Day time mean	≥10 knots	≥15 kno†s	≥20 knots	≥ 25 knots	≥30 knots	≥35 knots	≥40 knots	ralue (knota)	Date
Mersa Matrouh	• •			28	8							
Tahrir	3 0 1.9	2 5 1.2	3 4 2.7	28 25	8	3 0	0	0	0	0	56 22	12
Bahtim	2 0	0.9	3.2	-	_		_			_		_
Kharga , , , ,	3.5	2.7	4.4	27	21	6	1	0	0	0	30	12
		ĺ		1	1					!	[

PRINTED IN ARAB REPUBLIC OF EGYPT
BY THE GENERAL ORGANIZATION
FOR GOVT. PRINTING OFFICES. CAIRO
First Under-Secretary of State
ALY SULTAN ALY
Chairman of the Board of Directors

905-1971-150

MONTHLY WEATHER REPORT

VOLUME 12

NUMBER 12

DECEMBER,

ATMOSPHERIC SCIENCES
LIBRARY

SEP 6 1972

U. S. Dept. of Commerce

U.D.C. 551. 506.1 (68)

PUBLICATIONS OF THE METEOROLOGICAL AUTHORITY OF THE ARAB REPUBLIC OF EGYPT—CAIRO

In fulfilment of its duties, the Egyptian Meteorological Authority issues serveral reports and publications on weather, climate and agro-meteorology. The principal publications are described on this page.

Orders for publications should be addressed to:

"Chairman of the Board of Directors, Meteorological Authority, Kubri-el-Qubbeh - CAIRO".

THE DAILY WEATHER REPORT

This report is issued daily by the Meteorological Authority since the year 1901. It includes surface and upper air observations carried out by the relevant networks of the Republic at the principal hours of observations.

As from January 1968 this report was revised to include a condensed representative selection of surface and upper air observations besides the 1200 U.T. surface & 500 mb charts.

As from 1st January 1972, the Daily Weather Report will not be issued or distributed because it does not serve no longer any good purpose as it used to be in the past. The Meteorological Authority is ready to supply the recipients of the Report with any information used to be included in it, if they so desire.

THE MONTHLY WEATHER REPORT

5 1 July 💕

First issued in 1909, the Monthly Weather Report served to give a brief summary of the weather conditions that prevailed over Egypt during the month, with a table showing the mean values for few meteorological elements and their deviations from the normal values. From 1954 to 1957 this report was in a rapid state of development and extension resulting into a voluminous report on January 1958 giving surface, upper air, and agro-meteorological data for Egypt.

As from January 1964, the Monthly Weather Report was pressed to give climatological data for a representative selection of synoptic stations.

THE AGRO-METEOROLOGICAL ABRIDGED MONTHLY REPORT

Gives a review of weather experienced in the agro-meteorological stations of Egypt as well as monthly values of certain elements.

THE ANNUAL REPORT

This report gives annual values and statistics for the various meteorological elements, together with a summary of the weather conditions that prevailed during all months of the year.

CLIMATOLOGICAL NORMALS FOR EGYPT

A voluminous edition was issued in March 1968 which brings normals and mean values up till 1960.

METEOROLOGICAL RESEARCH BULLETIN

First issued in January 1969 on a bi-annual basis. It includes research works carried out by members of staff of "The Meteorological Institute for Research and Training" and the Operational Divisions of the Meteorological Authority.

TECHNICAL NOTES

As from October 1970, the Meteorological Authority started to issue a new series of publications in the form of Technical Notes (non periodical) on subjects related to studies and applications of meteorology in different fields for the benefit of personnel working in these fields.

MONTHLY WEATHER REPORT

VOLUME 12

NUMBER 12

DECEMBER, 1969

U.D.C. 551. 506.1 (62)

CONTENTS

		PAGB
	General Summary of Weather Conditions	1–2
	SURFACE DATA	
Tab	le A1.—Monthly values of the Atmospheric Pressure, Air Temperature, Relative Humidity, Bright Sunshine Duration and Piche Evaporation	3
,,	A2.—Maximum and Minimum Air Temperatures	4
,,	A3.—Sky Cover and Rainfall	5
11	A4.—Number of Days of Occurrence of Miscellaneous Weather Phenomena	6
**	A5.—Number in Hours of Occurrences of Concurrent Surface Wind Speed and Direction Recorded Within Specified Ranges	7,8
	UPPER AIR DATA	
Table	B1.—Monthly Means and Monthly Absolute Higher & Lower Values of Altitude, air Temperature & Dew point at Standard and Selected Pressure Surfaces	9,10
••	B2.—Mean and Extreme values of The Freezing Level and The Tropopause; The Highest Wind Speed in The Upper Air	11
"	B3.—Number of Occurrences of Wind Direction Within Specified Ranges and The Mean Scalar Wind Speed at the Standard and Selected Pressure Surfaces	12-14
	AGRO-METEOROLOGICAL DATA	
Table	Reviews of Agro-meteorological stations	15,16 17
,,	C2.—Absolute Values, of Air Temperature at 1½ Metres Above Ground, Absolute Minim um Air Temperature at 5 Cms Above Ground Over Different Fields	17
,,	C3.—(Solar + Sky) Radiation, Duration of Bright Sunshine, Relative Humidity and Vapour Pressure at 1½ Metres Above Ground, Evaporation and Rainfall	17
• ,	C4.—Extreme Soil Temperature at Different Depths in Different Fields	13
99	C5.—Surface wind	18

Note: For expianatory notes on tables please refer to Volume 12, Number 1 (January 1989).

GENERAL SUMMARY OF WEATHER CONDITIONS

DECEMBER 1969

Generally dry, characterized with seven transitory secondary depressions. Subnormal rainfall.

GENERAL DESCRIPTION OF WEATHER

The prevailing weather during this month was generally rather cold with light and subnormal rainfall in the mothern parts of the Republic. In the middle and southern parts, weather was generally dry and mild day-time but cool night-time. Four cold waves of light intensity prevailed most of the month, and were preceded by short rather warm spells round the periods (1st-3rd), (9th - 12th), (20th - 21st) and (27th - 29th). The first and second warm spells were the most presonneed, mainly in land areas.

Light rising sand occurred during several days over scattered parts in north of the Republic, mainly over west of the Mediterranean coast. Early morning mist and fog developed during several days over scattered localities in Delta, Cairo and north of Upper Egypt district.

PRESSURE DISTRIBUTION

The most prevailing pressure systems over the synoptic surface charts during this month were.

- The Siberian anticyclone.
- The Atlantic anticyclone and its extension over North Africa.
- Deep low pressure systems through North Europe.

Secondary depressions through the Mediterranean and its vicinities.

- The Sudan low pressure trough.

During this month seven secondary depressions were distinguished. The first four secondary depressions developed over Central Mediterranean and its vicinities on the 1st, 4th, 7th and 14th respectively, and then proceeded northeastwards. The troughs of the first, third and fourth depressions passed through East Mediterranean on the 3rd, 12th and 17th respectively. The second depression filled up west of the Black Sea on the 7th. The last three depressions originated over West Mediterranean on the 18th, 23rd and 26th. They moved eastwards and traversed East Mediterranean on the 22nd, 25th and 30th respectively.

The barometric pressure over Egypt during this month was in particular affected by the transit of the above mentioned secondary depressions through East Mediterranean, and experienced consecutive oscillations with their minima round the 3rd, 12th, 16th, 22nd, 25th and 30th.

The most outstanding pressure systems over the upper air charts were:

- Deep upper low pressure systems over
 North Eurasia and North Atlantic.
- Secondary upper troughs or lows through the Mediterranean Sea and its vicinities, traversing East Mediterranean on the 4th, 12th, 18th, 23rd and 26th.
- Upper high pressure belt south of latitude 30° N.

SURFACE WIND

Surface winds during this month were generally light to moderate w/sw in the northern parts, and Nly in the middle and southern parts. Winds became fresh to strong during several days over scattered localities, mainly over west of the Mediterranean coast.

TEMPERATURE

Maximum air temperature showed small variability in general in the northern parts, and moderate variability in the middle and southern parts. It was below normal during the cold waves which prevailed most days of the month and was above normal during the warm periods. Maximum air temperature values ranged generally between 18°, 22° C in the northern parts, between 20°, 25°C in the Middle parts, between 23° 30° C in the southern parts.

The absolute maximum air temperature was 33.2° C reported at Kom Ombo on the 10th.

Minimum air temperature showed irregular fluctuations. It was generally below

normal most of the month. Minimum ai temperature values ranged generally bet ween 6°, 15° C in the northern and southern parts, and between 3°, 11 °C in the middle parts. It is worthy to mention that minimum air temperature fell below 0° C in few localities in the Western Desert district during the last week of the month.

The absolute minimum air temperature was — 1.1 °C reported at Dakhla on the 27th.

PRECIPITATION

This month was generally rainless with the exception of several days of light rain over the Mediterranean district, mostly during the second half of the month. The monthly totals of rainfall were excessively subnormal.

The highest daily rainfall was 11.0 mm. reported over Tolombat El Boseili (Lower Egypt) on the 22nd.

The highest monthly rainfall was 29.0 mm. reported at Tolombat El Tabia (Mediterranean district).

Chairman (M. F. TAHA)

Board of Directors

Cairo, March 1972

SURFACE DATA

Table A 1.—MONTHLY VALUES OF THE ATMOSPHERIC PRESSURE, AIR TEMPERATURE, RELATIVE HUMIDITY, BRIGHT SUNSHINE DURATION & PICHE EVAPORATION DECEMBER 1969

	Atmosp Pressure					Air '	l'emperatu	ire °C				Rela		Brig	ht Sunshi	ne	mms.
	M.S		Maxin	num	Minin	num	:	Dry 1	Bulb	Wet	Bulb	Humid	ity %	Dure	tion (Hou	rs)	stion 1
STATION	Mean	D.F. Normal or Average	(A) Mesn	D.F. Normal or Average	(B) Mean	D.F. Normal or Average	$\frac{A+B}{2}$	Mean	D.F. Normal or Average	Mean	D.F. Normal or Average	Mean	D.F. Normal or Average	Total Actual	Total Possible	%	Piche Evaporation
allum	1016.6	-2.1 -1.7 -0.9 -1.2	20.4 19.9 21.0 20.7	-0.1 +0.1 +0.5 +0.9	10.6 9.1 9.6 12.6	-0.4 -1.5 -1.5 -1.0	15.5 14.5 15.3 16.6	15.1 14.0 15.1 16.1	-0.7 -0.5 -0.2 -0.2	9.9 10.4 11.7 13.1 —	-1.8 -1.0 -1.0 -0.6	47 61 64 69 —	-12 - 7 - 8 - 4 	239.7 218.5 250.2	\$13.9 \$15.6 \$15.6 —	76 69 79 —	9. 7. 4. 7.
lanta	1016.2	-1.0	21.6	+0.3	7.6	0. 6	14.6	13.7	-1.0	10.5	-1.2	64	_ 3	246.6	\$16.8	78	3.
Cairo	. 1017.0	-1.0	21.5	+0.8	10.2	-0.2	15.8	15.6	+0.2	10.4	-1.1	48	-14	-	_	_	10.
Fayoum (A Minya (A Assyout (A Luxor (A Aswan (A) 1016.6) 1016.5	-1.4 -0.4	22.9 26.0	+0.6 +0.2 +0.6 +1.2 +0.7	6.5 5.3 8.1 6.9 10.7	-1.9 -1.6 -0.7 -0.7 +0.6	14.5 13.8 15.5 16.4 18.6	13.8 13.1 15.0 15.7 18.1	-0.6 -0.6 -0.2 +0.7 +0.3	10.0 9.2 10.0 10.7 10.7	-0.8 -0.9 -0.2 -0.4 -0.2	59 56 49 50 33	$ \begin{array}{c c} -2 \\ -6 \\ 0 \\ -3 \\ -3 \end{array} $	261.9 —	322.9	81	8. 4. 8. 4. 14.
Biwa Behariya Farafra Dakhla Kharga	. 1017.1 . 1018.3 . 1018.3	$ \begin{array}{c cccc} & -1.2 \\ & -1.7 \\ & +1.6 \end{array} $	23.0 22.0 23.7	+0.1 +1.4 0.0 +0.4 +0.5	5.6 5.8 4.6 3.6 7.0	-0.5 -0.9 -1.4 -2.5 -1.0		12.9 13.8 12.8 13.0 15.8	-0.7 -1.0 -0.7 -1.3 +0.6	7.6 8.5 7.2 7.3 8.8	-1.6 -1.5 -1.3 -1.5 -0.8	42 44 38 38 37	—1 3 — 6 — 8 — 6 — 9	259.4 — — — 297.4	319.9 — — — 829.2	81 - - - 90	6.5
Tor Hurghada Quesir	. 1015.			+1.0 +0.1	11.8 16.2	+0.1 +0.4	17.6 20.2	17.7 20.3	+0.5 +0.4	12.9 14.5	+0.3 -0.5	 55 50	0 - 8	 - -	 - -	<u>-</u>	8 12

Table A 2.- MAXIMUM AND MINIMUM AIR TEMPERATURES

DECEMBER - 1969

			Maxi	mum Te	mperatu	re °C				Grass I				Minimum	Tempers	ture °C			
Station	set	_	ř		No.	of Da	ys with	Max-T	emp.	4	Normal)st		st.		N		ays wi Temp.	th
	Highest	Date	Lowest	Date	>25	>30	>35	>40	>45	Mean	Dev. From	Highest	Date	Lowest	Date	<10	<5	<0	<-5
Sallum	27.9 25.6 23.6 23.8	2 2 2 3 —	16.9 16.8 18.5 17.7	25 25 25 15 —	1 1 0 0	0 0 0 0	0 0 0 0 -	0 0 0 -	0 0 0 0 -	10.1 7.4 7.9 11.5		16.7 13.1 14.4 17.0	2 3 4 11 —	6.9 4.5 4.6 9.5 —	8 6 7 22 —	13 20 17 1 —	0 1 2 0 —	0 0 0 0 -	0 0 0 0 -
Tanta	26.8	3	17.7	15	3	0	0	0	0			11.7	12	3.2	28	25	4	0	0
Cairo (A)	27.4	2	18.5	15	3	0	0	0	0	_	_	14.3	4	6.3	28	13	0	O	0
Fayoum	28.8 28.3 28.8 31.6 33.1	10 11 3 11 10	18.9 19.4 18.0 20.6 20.8	26 26 26 23 23	4 5 7 18 20	0 0 0 5 5	0 0 0 0	0 0 0 0	0 0 0 0 0	3.9 2.2 5.3 4.2		10.8 8.4 11.5 10.8 16.4	3 3 12 12 12	3.0 2.4 5.0 2.6 5.0	22,29 28 17 27 27	29 31 25 26 14	7 16 0 6 0	0 0 0 0	0 0 0 0
Siwa Bahariya Farafra Dakhla Kharga	28.9 29.6 30.3 29.8 31.5	2 2 11 9 11	18.1 18.8 18.4 19.4 19.8	22 23 20 23 23 23	2 7 4 10 11	0 0 1 0 3	0 0 0 0	0 0 0 0	0 0 0 0	3.0 4.7 3.9 — 4.7		11.0 11.0 10.4 10.8 13.8	3 4 16 4 11,13	1.6 1.0 -0.6 -1.1 1.6	31 27 29 27 27 25	30 29 30 30 24	13 12 18 22 9	0 0 1 4 0	0 0 0 0
Tor	27.2 27.5	11 30	20.6 21.9	24 31	7 8	0 0	0 0	0 0	0 0	 14.1		15.3 20.3	21 22	7.8 13.0	25 26	7 0	0 0	0 0	0 0

		Mean	Sky Cove	er (Oct).					Rai	infall mm	8.					
STATION	00	06	12	18	Daily	Total	D. From		x. Fali ne day		Numbe	er of da	ys Wit	Amou	nt of Rai	n
	U.T.	U.T.	U.T.	U.T.	Mean	Amount	Normal	Amount	Date	<0.1	≥0.1	≥1.0	≥5.0	≥10	≥25	≥50
Sallum	3.8	2.6 3.1 3.6 2.7	3.7 3.4 4.1 2.6	2.5 1.7 3.1 —	3.0 2.4 3.6 	0 9 0.9 8.8 0.5	—19.2 —33.0 —47.3 —18.4 —	0.8 0.7 3.8 0.3 —	15 15 22 30	0 0 2 0 -	2 2 5 2 —	0 0 5 0 —	0 0 0 0 -	0 0 0 0	0 0 0 0 -	0 0 0
anta	1.4	2.1	2.9	0.6	1.6	0.0	-10.0	0.0	_	0	0	0	0	0	0	0
Cairo (A)	1.9	2.4	3.3	1.2	1.9	0.0	- 8.0	0.0		0	0	o	0	0	0	0
Fayoum	0.6 0.7 1.2 1.0	2.3 1.8 1.5 1.9	2.9 2.1 1.7 1.9 2.0	1.7 1.0 1.1 1.7 1.5	1.4 1.1 1.7 1.5	0.0 0.0 0.0 0.0 0.0	- 4.6 - 0.7 - Tr. - 0.1 - 0.2	0.0 0.0 0.0 0.0 0.0	-	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
Siwa	0.6 0.8 - 0.4 0.6	1.5 2.0 1.5 0.4 1.4	2.2 2.3 2.4 1.2 1.4	0.5 0.7 1.0 0.5 0.9	1.3 1.5 - 0.6 1.1	0.0 0.0 0.0 0.0	- 2.1 - 1.2 - 0.3 - 0.1 - 0.3	0.0 0.0 0.0 0.0 0.0	-	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
or	- 0.8 0.8	1.8 2.2	- 2.1 2.7	$\begin{bmatrix} -1.4 \\ 1.6 \end{bmatrix}$	1.5 1.8	0.0 0.0		0.0 0.0		0 0	- 0 0	- 0 0	0	 0 0	 0 0	0 0

5

Table A 4.—DAYS OF OCCURRENCE OF MISCELLANEOUS WEATHER PHENOMENA.

DECEMBER 1969

		Precip	itation				Metres				7.8 36.8	E 8			
STATION	Rain	Snow	Ice. Pellets	Hail	Frost	Thunderstorm	Mist Vis ≥ 1000 M	Fog Vis < 1000 metres	Heze Vis ≥ 1000 Metres	Thick Haze Vis < 1000 Metres	Dust or Sandrising Vis ≥ 1000 Metres	Dust or Sandstorm Vis < 1000 Metres	Gale	Cloar Sky	Cloudy Sky
Sallum	2 2 5 5 -	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 -	0 0 1 0	0 0 0 0	0 0 2 0 -	0 0 1 0 	0 0 0 0 -	8 12 4 2 	0 1 1 0 —	0 0 0 0 	11 12 8 -	3 0 1 —
Tanta	ø	0	0	0	0	0	4	0	2	0	2	0	0	17	0
Cairo (A)	o	0	0	0	0	0	0	1	16	0	1	1	0	18	0
Fayoum (A) Minya (A) Assyout (A) Luxor (A) Aswan (A)	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 9 1 0	0 0 0 0	0 9 0 12	0 0 0 0	0 1 1 2 4	0 0 0 0	0 0 0 0	23 24 21 20	- 0 1 0 1
Siwa	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 0 0 1 1	0 0 0 0	4 2 2 1 1	0 0 0 0	0 0 0 0	22 22 30 24	1 0 - 0
Tor	- o	- 0 0	- 0 0	- • •	 0 0	_ 0 0	 0 0	- 0 0	_ 0 0	- 0 0	10	_ 0 0	 0 0	21 20	

Table A 5.—NUMBER IN HOURS OF OCCURRENCES OF CONCURRENT SURFACE WIND SPEED AND DIRECTION RECORDED WITHIN SPECIFIED RANGES

DECEMBER - 1969

	(8)	urs)	hours)			Numt	er in				rence				ng fr	om th	10
Station	Calm (hours)	Variable (hours)	Unrecorded (hours)	Wind speed in knots	345 / 014	015 / 044	1	075 / 104	1	1	165 / 194	1	225 / 254	255 / 284	285 / 314	315 / 344	All directions
Sallum . `	1	4	0	J—10 11—27 28—47 ≥48 All speeds	4 0 0 0 4	20 0 0 0 20	5 0 0 0 5	17 0 0 0 0	18 0 0 0 18	27 3 0 0 30	33 4 0 0 37	30 47 0 0	0	56 115 0 0	78 125 1 0 204	12 4 0 0	340 398 1 0 739
Mersa Matruh	3	0	0	1—10 11—27 28—47 > 48 All speeds	7 0 0 0 7	6 0 0 0 6	3 0 0 0 3	6 0 0 0 6	14 0 0 0 0 14	44 18 0 0 62	65 63 0 0 128	61 58 0 0	65 100 0 0 165	40 109 0 0 149	19 26 0 0 45	21 16 0 0 37	351 390 0 0 741
Alexandria	0	0	0	1—10 11—27 28—47 ≥48 All speeds	27 1 0 0 38	17 0 0 0 0 17	34 3 0 0 37	60 1 0 0 61	56 2 0 0 58	63 4 0 0 67	103 36 0 0	74 97 0 0	35 47 0 0 82	29 21 0 0 50	13 8 0 0 21	13 0 0 0 13	524 220 0 0 744
Port Said	9	2	0	1—10 11—27 28—47 ≥48 All speeds	11 0 0 0 11	26 2 0 0 28	48 5 0 0 53	49 6 0 0 55	38 0 0 0 38	54 2 0 0 56	51 25 0 0	92 99 0 0	124 29 0 0 153	21 0 0 0 21	16 4 0 0 20	31 0 0 0 31	561 172 0 0 733
Tanta	342	0	0	1—10 11—27 28—47 ≥48 All speeds	10 0 0 0	11 0 0 0 11	16 0 0 0 16	27 1 0 0 28	11 0 0 0 11	8 0 0 0 8	46 2 0 0 48	66 5 0 0 71	79 23 0 0	53 12 0 0 65	17 1 0 0 18	13 1 0 0 14	357 45 0 0 403
Cairo	71	4	0	1—10 11—27 28—47 ≥ 48 Al ₁ speeds	14 3 0 0 17	25 0 0 0 25	38 9 0 0 47	56 9 0 0 65	43 3 0 0 46	38 2 0 0 40	61 65 0 0	55 81 0 0	42 20 0 0	36 11 0 0 47	33 0 0 0 33	22 3 0 0 35	468 206 0 0
Fayoum	50	3	14	1—10 11—27 28—47 ≥48 All speeds	66 0 0 66	75 0 0 0 15	10 0 0 0 10	18 0 0 0 18	18 0 0 0 18	51 0 0 0	92 4 0 0	7 0 0	103 8 0 0	42 0 0 43	27 0 0 0 37	39 0 0 0	652 19 0 0 671
Minys	190	2	O	1—10 11—27 28—47 ≥ 48 All speeds	161 18 0 0 174	84 6 0 40	8 0 0 3	0 0 0	0 0 0	39 3 0 0 42	87 5 0 0	34 2 0 0 76	18 1 0 0	21 0 0 77	49 0 0 0 55	77 3 0 0 79	513 39 0 0 568

Table A 5 (cont.) - NUMBER IN HOURS OF OCCURRENCES OF CONCURRENT SURFACE WIND SPEED AND DIRECTION RECORDED WITHIN SPECIFIED RANGES

DECEMBER 1969

	(8)	urs)	oours)			Numb	er in		s of canges						ng fro	∍m th	e
Station	Calm (hours)	Variable (hours)	Unrecorded (hours)	Wind speed in knots	345 / 014	/	045 / 074	675 / !04	105 / 134	135 / 164	105 / 194	195 / 224	225 / 254	255 / 284	285 / 314	315 / 344	All directions
Asyout	13	Ü	1	1-10 11-27 28-47 -48 All speeds	4 1 0 0 5	19 0 0 0 19	18 0 0 18	28 0 0 0 28	39 3 0 0 42	24 0 0 0 24	14 2 0 0 16	33 5 0 0 38	2d9 12 0 0 231	149 24 0 0 173	100 18 0 0	21 7 0 0 28	658 7 <u>2</u> () 0 730
Luxor	45	0	0	110 1127 2847 >48 All speeds	70 0 0 0 70	80 0 0 80	45 0 0 45	55 -0 -0 -0 -0 55	32 0 0 32	69 0 0 0 69	93 0 0 0 93	23 0 0 0 23	40 0 0 0 40	0 0 0 5 6	65 2 0 0 61	68 1 0 0 69	696 3 0 0 699
Aswan	1	1	o	1.—10 11.—27 28.—47 ≥48 All speeds	401 62 0 0 463	41 5 0 46	3 0 0 0 3	6 0 0 0	6 0 0 5	6 0 6	0 0 0 0	0 0 0 6	3 0 0 0 0	5 0 0 5	15 1 0 0 16	149 27 0 0 176	647 95 0 0 742
Siwa	28	12	0	1—10 11—27 28—47 > 45 Ali speeds	11 0 0 0 11	0 0 4	7 0 0 0 7	61 0 0 61	83 0 0 0 83	79 1 0 0 8 9	48 3 0 0 51	35 0 0 0 35	55 0 0 0 55	160 21 0 0 181	102 21 0 0 123	13 0 0 0 13	658 46 0 0
Dakhla	. 63	4	0	1—10 11—27 28—47 ~48 All spends	27 0 0 0 0 27	23 0 0 0 23	32 0 0 32	19 0 0 0 49	35 0 0 0 0 35	31 0 0 0 31	52 0 0 0 52	41 0 0 41	45 0 0 0 45	98 0 0 0 98	134 0 0 0 134	106 4 0 0	673 4 0 0 677
Kharga	. 5	7	2:	1—10 11 - 27 28—47 	238 56 0 0 294	116 7 0 0 123	26 1 0 0 21	7 0 0 0 0 7	15 0 0 0 13	15 0 0 15	16 0 0 0 16	13 0 0 13	10 0 0 0 10	24 0 0 0 24	34 2 0 0 36	125 6 0 131	639 72 0 0 711
Hurghada	. 11	l.	2	110 1127 2847 -48 All spees	47 43 0 0 90	21 0 0 0 21	13 0 0 0 13	7 0 0 0 7	4 1 0 0 5	5 3 0 0 8	6 1 0 0 6	0 0 0	8 0 0 0 8	47 29 0 76	145 154 0 0 299	50 147 0 0 197	302 378 730
Quaseir	. 1	1	11	1-10 11 27 28-47 ≥48 All spees	44 72 0 0 116	73 10 0 0 83	19 0 0 0 - 19	19 0 0 0 19	5 0 0 0 5	13 0 0 0 13	3 1 0 4	11 0 0 11	15 0 0 0 15	58 4 0 0 62	201 9 0 0 210	118 56 0 0 174	579 152 0 0 731

UPPER AIR CLIMATOLOGICAL DATA

Table B 1-MONTHLY MEANS AND MONTHLY ABSOLUTE HIGHER & LOWER VALUES OF ALTITUDE, AIR TEMPERATURE & DEW POINT AT STANDARD AND SELECTED PRESSURE SURFACES

DECEMBER — 1969

	Pressure Surfare	Air	tude of Pre	ssure Surfac	ce (gpm)		T∈mpe:	rature (°C)		Dew 1	Point (°C)
Station	(Millibar)	N	Mean	Highest	Lowest	N	Mean	Highest	Lowess	N	Mean
	Surface	25	1013m.b.	1018m.b.	1007m.b.	25	11.9	15.1	9.0	25	5.4
1	1000	24	138	177	90	24	14.5	18.0	12.0	24	4.1
1 1	850	24	1501	1547	1454	24	7.7	15.3	2.9	24	2.9
1 1	700	24	3086	3157	3018	24	0.8	5.4	3.9	24	-13.4
	600	23	4305	4398	4231	23	6.5	3.0	11.5	21	18.0
	500	2.2	5714	5816	5622	22	15.9	12.8	-19.9	21	-26.0
	400	20	7369	7486	7258	20	27.1	- 24.3	30.8	20	-38.0
응 !	300	19	9373	9522	9250	19	43.4	-38.4	48.2	17	-52.3
8	250	5	. 10582	10741	10466	15	51.6	47.0	-56.2	lio	59.4
Mersa Matruh 0000 U.T.	200	1 11	1:2016	12155	11883	ii	58.9	53.9	63.1	3	65.8
€ \	150	6	13706	13895	13690	6	63.3	0.5	-66.3		_
- 일	100	1	16243	16365	16173	6	66.8	- 60.8	- (9.9		
	70	3	18460	18.510	18419	3	61.7	-62 3	68.6		
- i	60									_	
출	50	1					· · – -			l _	
- 1 1	40	,							-		
[30	-								_	
1 1	20						-	!			_
'	10										_
		1		1	»j¢	<u> </u>	· · · · · · · · · · · · · · · · · · ·	1	- 	<u> </u>	<u> </u>
, [Surface	31	992m b.	995m.b.	989m,b,	31	11.1	22.2	8.5	31	1.6
i i	1000	31	124	152	100		· -			-	
	850	31	1508	1538	1479	31	15.5	19.6	10.0	31	_ 2.7
	700	31	3133	3175	3077	31	8.1	13.2	4.0	31	-13.9
	600	31	4391	4455	4320	31	1.1	4.6	=- 2.2	31	-19.6
1 1	500	31	5830	5902	5746	31	9.1	6.5	-12.8	31	-20.9
₽	400	31	731 7	7595	7420	31	- 21.5	18.8	-25.2	31	36.2
5	300	31	9569	9372	9460	31	37.8	34.4	-43.4	31	-48.8
	250	31	10803	10918	10690	31	46.4	1 11.1	-49.9	31	-5f.2
Авжац 0000 U.T.	200	30	12252	12388	12128	30	56.2	52.8	60, 3	27	-64.4
9	150	29	14045	14220	13919	29	63 4	5 -5 × 6	70.8	i	-71.2
7	100	24	16483	1 5l	16347	24	—72 .8	- 69.5	77.7	i -	_
	70	15	18601	38740	18500	15	72.4	62.4	81.1	_	
~	60	13	19511	19450	19414	13	-66.8	-59.8	-71.0	1 -	
1 1	50	13	20821	20764	20514	13	-62.1	57.6	65.3		
	40	10	22021	22145	21954	10	-59.0	-56.7	-61.7		
	30	8	23863	23977	23819	8	-52.6	-47.7	-58.0		
1 1	20	4	26501	26538	26432	4	-46.5	-43.2	-53.0		
١ ;	10	1	31048			1	_37.2	i	_	I —	

N == The number of cases the element has been observed during the month.

Note: (% astological appearain data for Helwan at 0000 U.T. are missing, since number of days of release of radiosonde sets at this station are less than the permissible number needed for calculating or processing monthly values.

^{*} The atm maheric pressure corrected to the elevation of the radiosonale station.

UPPER AIR CLIMATOLOGICAL DATA

Table B 1 (contd). MONTHLY MEANS AND MONTHLY ABSOLUTE HIGHER & LOWER VALUES OF ALTITUDE, AIR TEMPERATURE & DEW POINT AT STANDARD AND SELECTED PRESSURE SURFACES

DECEMBER -- 1969

					SMBER -	1908					
	Pressure	Alt	itude of Pres	ssure Surface	e (gpm)		Temper	ature (°C)		Dew P	oint (°C)
Station	Surface (Millil, ar)	N	Mean	Highest	Lowest	N	Mean	Highest	Lowest	N	Mear:
Meres Matruh 1200 U.T.	Surface 1000 850 700 600 500 200 200 100 100 0 0 0 0 0	31 31 31 31 31 29 27 26 24 15 6 3 1	1012m.b. 129 1488 3049 4293 5695 7338 9348 10556 11948 13774 16246 18344	# 1018m,b, 181 - 1645 3140 4381 5798 7418 9449 10679 12:67 13:529 162:0	**1003m,b. 54 1406 2996 4193 5550 7126 9083 10299 11,759 13675 16178	31 31 31 31 31 29 27 26 24 18 6 3 1	19.1 18.1 6.9 0.4 - 6.8 -16.7 - 28.2 - 42.4 50.7 52.8 66.1 67.3	24.7 24.0 16.3 5.0 - 2.1 12.7 23.8 37.8 46.2 52.8 60.9 64.3	17.2 16.0 0.5 -5.0 -13.6 -25.0 -39.3 -48.3 -54.7 -63.8 -64.5 -67.1	31 31 31 30 29 27 21 18 7	7·5 5.7
Helwan 2 U.T.	Surface 1(*)0 8:00 7:00 6:00 7:00 400 8:00 1:00 1:00 1:00 1:00 1:00 1:00 1:	30 30 30 30 30 29 27 27 24 22 17 14 14 10 9 2	99'en b, 10't 150's 31': 7 433's 575't 7443 9442 10671 12.669 10589 10589 10589 22084 23860 26416 30926	1004m.b. 174 1546 3177 4432 5565 7542 9548 10562 11555 14015 16529 13 69 9870 29733 22200 24003 26439	993m.b. 8 f 1459 3045 4259 5658 7297 9300 16511 11940 13734 16225 18405 19380 20:75 21950 23769 24393	30 15 39 39 39 39 27 27 27 24 22 17 14 14 15 19 9	20.2 19.9 10.2 3.2 -3.9 -17.4 -25.5 -40.3 57.4 -62.0 67.8 66.3 63.1 59.7 54.2 49.0 48.4	26.3 26.8 18.0 7.1 1.0 10.2 20.8 36.2 46.5 52.5 58.0 57.4 61.5 59.9 54.1 49.1 43.6 46.0	16.5 16.4 4.3 -1.4 -9.2 -17.5 -29.5 -44.3 -51.0 -65.6 -69.4 -70.2 -72.8 -67.0 -63.7 -60.1 -58.1 -51.9	30 15 30 30 30 30 29 25 20 6	5.8 5.5 -14.6 -21.2 -28.6 -39.0 -51.6 -59.5 -65.7 -69.8
Aswen 1200 U.T.	Surfice 1000 550 750 690 500 550 500 150 190 70 50 40 30 20	31 31 30 30 20 28 25 27 24 21 10 10	113 1513 3142 4407 5851 7546 9613 10856 12310 14120 16570 18655 19556 29676 22073 2:926	995m.b 150 1529 3177 4454 5905 7617 9704 10960 12432 14244 16767 18901 19005 20742 22175 24009 26744	988m.b. 88 1486 3102 4350 5784 7443 9501 10746 12191 13992 16434 18480 19490 20607 22015 23876 26545	31 31 30 30 20 29 28 28 27 24 22 14 10 8 7	25.0 	-49.4	20.0 8.3 4.9 -3.0 -12.9 -26.2 -39.0 -48.6 -67.8 -76.4 -75.3 -71.0 -64.3 -58.7 -52.2 -49.8	31 30 30 30 28 28 27 5	6.5 -5.3 -14.4 -19.1 -26.6 -37.6 -49.467.265.369.1

N = The number of cases the element has been observed during the month.

^{*} The atmospheric pressure corrected to the elevation of the radiosonde station .

Table B 2.—MEAN AND EXTREME VALUES OF THE FREEZING LEVEL AND THE TROPOPAUSE THE HIGHEST WIND SPEED IN THE UPPER AIR

DECEMBER - 1969

					Free	ezing Le	evel							First	Tropo	pause				High	est wi	nd spe	ed
			Mean	: !		${f H}$ ighest	1		Lowest			Mean		1	Highest		1	Lowest		m l	b.)	٠	00
	STATION	Alticude (gr m)	Pre. sure (mb.)	Dew Point (°C)	Altitude (gpm)	Pressure (mb.)	Dew Point (°C)	Alti:ude (gl m)	Pressure (mb.)	Dew Point (°3)	Alti ade (grm)	Pressure (mb.)	Temperature (°J)	Alticude (grm)	Pressure (mb.)	Tempera ure	Altirude (grm)	Pressure (mb.)	Temperature (°C)	Altitude (g) m)	Pressure (m 9.)	Direction (000—360,	Speed in kr ots
ı		(%)	(N)	(N)							(N)	(N)	(N)										
E	Merra Matruh .	3075 (24)	702 (24)	-11.8 (23)	3 970	634	-10.7	1860	809	—3 .9	12085 (9)	199 (9)	-6 0.0	13783	150	-66.9	10900	241	-52.8	11140	230	240	165
0000 U.T	Helwan		_	_		_	_	_	! ! !	<u> </u>	-	-	_			_	_	_	_	_	-	_	_
	Aswan	4514 (31)	589 (31)	_20.2 (30)	5040	537	—2 5.0	3030	 655 	-18.6	13773 (19)	115 (19)	-72.5 (19)	17950	79	—79 .5	12420	191	-59.5	11965	210	258	136
,		(N)	(N)	(N)				1	1		(N)	(N)	(N)										
.i	Mersa Matruh	3066 (31)	703 (31)	-15.8 (30)	4000	625	-13.8	1830	813	—7.2	11360 (11)	226 (11)	-57.2 (11)	13990	145	-65.2	7116	400	—39. 5	10170	260	25 0	165
1200 U.T.	Helwan	3675 (30)	651 (30)	-17.6 (30)	4590	590	-22.1	2740	73.	12.1	13950 (21)	177 (21)	-61.8 (21)	17000	93	 -73.8	10670	243	-52 .0	9 560	355	260	150
	Aswan	4700 (30)	579 (30)	-20.8 (30)	5200	545	13.€	3910	53 4	-21.4	159)7 (15)	114 (15)	-70.S (15)	18060	77	—78.5	13300	173	65, 2	11510	225	262	154

N — The number of cases the element has been observed during the month,

Table B 3.—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES

MERSA MATRUH (A) — DECEMBER 1969

		Wind between ranges of direction (000 3%)	of (N)
Time	Pressure Surface (Millibar.)	345 c15 co5	Total Number of Observations (T.N.) Mean Scalar wind Speed (Knots)
0000 T.U.	Surface 1000 850 700 600 500 300 250 200 150 100 70 60 50 40 30	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	26
1200 T.U.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20 10	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	31

N= The number of cases the wind has been observed from the range of direction during the month.

TN=The total number of cases the wind has been observed during the month.

Table B 3. (contd.)—NUMBER OF OCCURRENCES OF WIND DIRECTION WITHEN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELECTED PRESSURE SURFACES HELWAN — DECEMBER 1969

									Wind	l betv	reen	range	s of d	lireeti	on (0	00—3	60)°									Calm	er of (T.N)	wind ots)
Time	Pressure Surface (Millibar.)	34 / 01	'	01	'	04 / 07	į	07. / 10		10 / 13			35 / 54	16 / 19		19 / 22		22 / 25		25 28	,	3	14		15 / 44	of nds	Numb	Alar (Kn
	(======================================	N	(ff) m	N	(ff) m	N	(ff) m	X	(ff) m	N	(ff) m	N	(ff) m	N	(ff) m	N	(ff) m	N	(ff) m	N	(ff) m	N	(ff) m	N	(ff) m	Numher	Total Observe	Mean Sc Speed
1200 T.U.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	1 1 7 0 0 0 0 0 0 0 0 0 	8 19 10 — — — — — — — — — — — — — — — — — —	2 1 0 0 0 0 0 0 0 0 0	11 11 10	2 1 1 0 0 0 0 0 0 0 0 	8 5 16	0 0 0 1 0 0 0 0 0 0 0	8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7	1 1 0 0 0 0 0 0 0 0 0	5 44	3 0 3 1 0 0 0 0 0 0 0	8 10 23	11 5 0 0 0 0 0 0 0	51	3 1 5 16 12 15 9 4 0 0	4 6 20 36 35 27 68 103 ———————————————————————————————————	4 0 5 5 6 4 6 4 1 1 1	5 -21 34 48 42 66 83 59 47 54 -	111344412231100	7	2 3 1 3 2 2 1 0 0 0 0 — — — — — — — — — — — — — — —	9 12 14 24 669 74 71 — — — — — — — — — — — — — — — — — —	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 15 30 29 27 25 17 10 4 2 1	7 8 16 32 43 60 67 90 80 76 54 — — —

N= The number of cases the wind has been observed from the range of direction during the month.

TN=The toatl number of cases the wind has been observed during the month.

Table B3.—(contd.) NUMBER OF OCCURRENCES OF WIND DIRECTION WITHIN SPECIFIED RANGES AND THE MEAN SCALAR WIND SPEED AT THE STANDARD AND SELCECTED PRESSURE SURFACES ASWAN (A) — DECEMBER 1969

									Win	nd be	tweer	ran	ges of	dire	ction	(000_	21 0°)								Calm	er of (T.N)	p G
Time	Pressure Surface (Millibar.)		45 / 14		15 / 43	ĺ	45 / 74	:	75 / 04)5 / 34		35 / 64	1	5 / 9 4		95 / 2 4	}	\$5 / 54	25	1		85 / 14	31 34	' l	er of Ca winds	Numb	san Scaler wind Speed (Knots)
		N	(ff) m	N)ff) m	N	(ff) m	N	(ff) m	N	(ff) m	N	(ff) m	N	(ff) m	N	(ff) m	N)ff) m	N	(ff)	N	(ff) m	N	(ff) m	Num	Total Observ	Mean Spee
0000 T.U.	Surface 1000 850 700 600 500 400 300 250 200 150 100 70 60 50 40 30 20	19 	8 4 - - - - - - - - - - - - - - - - - -	4 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 14 16 12	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 -3 1 0 0 0 0 0 0 0 0 0 0 0 0	4			0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 14 27 - - 30 15 3	0 19 6 10 8 6 1 2 3 3 1 1 1 0	5 17 36 41 54 76 95 88 65 41 31 21	1 7 14 12 13 15 14 15 8 1 2 2 0 0	5 12 28 36 40 56 65 74 83 82 56 15 21	0 3 5 4 3 4 5 9 8 6 2 2 1	13 22 21 35 47 62 73 80 77 54 19 17	6 -2 2 1 2 3 3 2 3 3 1 0 0 0 0	17 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31 28 28 28 28 28 28 28 27 25 15 8 7 6 3	9 19 29 39 53 65 72 84 78 50 20 18 20 18 22
1200 T.U.	Surince 1000 850 700 600 500 400 250 200 150 100 70 60 50 40 30 20	17 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0	9 12 8 10 	3 -4 0 1 0 0 0 0 0 0 0 0 0 0	6	0 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 6 2 2 12 12 12 12 12 12 12 12 12 12 12 12	1 1 0 0 0 0 0 0 0 0 0 0 0	8 13 2 - - - - - 10 14	1	3 9	0 3 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0	- 3 - 21 - - - - 35 - 20 - 8 -	0 3 4 2 0 0 0 0 0 0 0 0 0 1 0 0	9 16 29 — — — 32 — 5	0 -2 :0 9 10 9 7 1 1 1 0 2 2 2 4 4 1 0	8 10 25 37 46 78 73 52 38 32 11	0 5 10 11 17 18 13 10 1 2 4 1 0 0	13 20 34 37 50 67 76 90 78 55 22 33 20 7	0 4 6 3 3 3 8 6 4 4 3 1 3 0 0	7 17 20 31 52 75 75 62 50 24 27	7 2 0 1 1 1 2 2 1 0 1 0 0 0 0 0 0 0	9 	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31 31 30 30 29 28 26 20 16 8 7 5 4 4	8 — 9 16 28 26 51 63 75 72 57 30 25 18 7 10 17 —

N=The number of cases the wind has been observed from the range of direction during the month

TN=The total number of cases the wind has been observed during the month

REVIEW OF AGRO-METEOROLOGICAL STATIONS

MERSA MATRUH -- DECEMBER 1969

This month as a whole was slightly cooler than normal and appreciably less rainy. The total monthly rainfall was only 0.9 mm, against 30.9 mm, for normal. The month was characterized by three light cold waves during the periods (3rd-7th), (13th-19th) and (22nd-25th). The last cold wave yielded the lowest maximum air temperature for the month (16.8°C) on the 25th. Two light warm spells occurred on the 2nd and in the period (8th, 9th). The first warm spell yielded the highest maximum air temperature for the month (25.6°C).

The mean daily actual duration of bright mushice was 0.9 hour more than the corresponding value of El Kasr in December 1968.

TAHRIR - DECEMBER 1969

This month as a whole was slightly warmer than last December and almost rainless. Two warm spells were experienced during the periods (2nd - 3rd) and (9th - 11th). During rest of the month, the daily maximum air temperatures were slightly round normal. The first warm spell yielded the highest maximum air temperature for the month (27.7°C) and the lowest relative humidity (29%) on the 3rd. The lowest maximum air temperature for the month (19.6°C) was reported on the 23rd.

The extreme maximum soil temperatures were higher than the corresponding values of last December at all depths apart from the 5 cm. depth where it was 0.3 °C lower; the differences varied between 0.6 °C at 10 cm. and 1.5 °C at both 20, 50 cm. The extreme minimum soil temperatures were higher than the corresponding values of last December at depths between 2, 10 cm. and also at 100 cm. with differences ranging between 0.3 °, 0.8 °C. At 20 cm. depth the extreme minimum soil temperature was 0.2 °C lower, and at 50 cm. it was the same as last December.

The mean daily Pan evaporation was 0.2 mm. more than the corresponding value of December 1968. The mean daily actual duration of bright sunshine was 1.1 hour more than December 1968.

BAHTIM -- DECEMBER 1969

This month as a whole was slightly cooler than last December and almost rainless. Two warm spells occurred during the periods (2nd - 3rd) and (9th - 11th). During rest of the month the daily maximum air temperatures were below normal. The first warm spell yielded the highest maximum air temperature for the month (27.0°C) on the 2nd. The second warm spell yielded the lowest relative humidity (13%) on the 9th. The lowest maximum air temperature for the month (18.9°C) was reported on the 15th.

The extreme maximum soil temperatures were higher than the corresponding values of last December at all depths apart from the 5 cm. depth where it was slightly lower (0.2°C); the differences vaired between 2.9°C at 2 cm. and 0.5°C at 100 cm. The extreme minimum soil temperatures were lower than the corresponding values of last December at depths between 2, 20 cm. with differences between 1.8°C at 2 cm. and 0.2°C at 20 cm. At 50, 100 cm. the extreme soil minima were higher than last December by 0.5°, 0.3°C respectively.

The mean daily Pan evaporation was 0.24 mm, more than the corresponding value of December 1968. The mean daily actual duration of bright sunshine was 1.1 hour more than December 1968.

KHARGA DECEMBER 1969

This month as a whole was slightly warmer than normal. Two warm spells were experienced during the periods (2nd - 4th) and (7th - 12th). During rest of the month the daily maximum air temperatures were mostly below normal. The second warm spell yielded the highest maximum air temperature for the month (31.5°C) on the 11th and the lowest relative humidity (9°°) on the 9th. The lowest maximum air temperature for the month (19.8°C) was reported on the 23rd.

The extreme maximum soil temperatures were higher than the corresponding values of last December at all depths between 2, 100 cm, with differences ranging between 4.10°C at 2 cm, and 1.00°C at 100 cm. The extreme minimum soil temperatures were lower than the corresponding values of last December at depths between 2, 20 cm, with differences between 0.5, 1.00°C. At 50, 100 cm, the extreme soil minima were higher than last December by 0.3, 1.00°C respectively.

The mean daily Pan evaporation was 0.41 mm, more than the corresponding value of December 1968. The mean daily actual duration of bright sunshine was 0.2 hour less than December 1968.

Table C 1.—AIR TEMPERATURE AT 1½ METRES ABOVE GROUND
DECEMBER — 1969

	Air Ter	nperatu	re (°C)				Mean						era ture		
Mean Max.	Mean Min.	Mean of the day	Night time mean	Day time mean	- 5°C	0°C	5°C	10°C	15°C	20°C	25°C	30°C	35°C	40°C	45°C
19.9	9.1	14.0	11.7	16.3	24.0	24.0	23.9	19.8	9.0	1.2	0.1	0.0	0.0	0.0	0.0
22.1	7.3	13.7	10.6	17.0	24.0	24.0	23.3	17.6	9.6	2.9	0.1	0.0	0.0	0.0	0.0
21.7	6.8	13.5	10.4	16.7	24.0	24.0	23.4	18.0	8.4	2.2	0 2	0.0	0.0	0.0	0.0
24 5	7.0	16.0	12.5	19.5	24.0	24.0	23.1	19.6	13.1	6.3	1.7	0.2	0.0	0.0	0.0
	Mean Max. 19.9 22.1 21.7	Mean Mean Max. Mean Min. 19.9 9.1 22.1 7.3 21.7 6.8	Mean Mean Min. Mean of the day 19.9 9.1 14.0 22.1 7.3 13.7 21.7 6.8 13.5	Mean Mean of the day mean	Mean Max. Mean Min. Mean day Night time mean Day time mean 19.9 9.1 14.0 11.7 16.3 22.1 7.3 13.7 10.6 17.0 21.7 6.8 13.5 10.4 16.7	Mean Max. Mean Min. Mean of the day mean mean Night time mean mean Day time mean 19.9 9.1 14.0 11.7 16.3 24.0 22.1 7.3 13.7 10.6 17.0 24.0 21.7 6.8 13.5 10.4 16.7 24.0	Mean Max. Mean Min. Mean of the day Night time mean mean Day time mean -5°C 6°C 19.9 9.1 14.0 11.7 16.3 24.0 24.0 22.1 7.3 13.7 10.6 17.0 24.0 24.0 21.7 6.8 13.5 10.4 16.7 24.0 24.0	Mean Mean Mean Night Day time time mean -5°C 6°C 5°C 19.9 9.1 14.0 11.7 16.3 24.0 24.0 23.9 22.1 7.3 13.7 10.6 17.0 24.0 24.0 23.3 21.7 6.8 13.5 10.4 16.7 24.0 24.0 23.4	Mean Mean Mean Mean Night Day time mean -5°C 6°C 5°C 10°C	Mean Mean Mean Month of the day Mean Min. Mean Min. Mean Min. Mean Min. Mean Min. Mean Min. Mean Min. Mean Min. Mean Min. Mean Min. Mean Me	Mean Mean Mean Min. Mean Min. Mean Min. Mean Min. Mean Min. Mean Min. Mean Min. Mean Min. Mean Min.	Mean Mean Mean Might Day time day mean mean -5°C 6°C 5°C 10°C 15°C 20°C 25°C	Mean Mean Mean Min. Mean Min. Mean Min.	Mean Mean Mean Of the day Mean Min. Mean Min. Mean Min. Mean Min. Mean Min. Mean Min. Mean Mean Min. Mean Min. Mean Min. Mean Min. Mean M	Mean Mean Mean Min. Mean Might Day time mean -5°C 6°C 5°C 10°C 15°C 20°C 25°C 30°C 35°C 40°C

Table C 2. EXTREME VALUES OF AIR TEMPERATURE AT 1½ METRES ABOVE GROUND, ABSOLUTE MINIMUM AIR TEMPERATURE AT 5cm ABOVE GROUND OVER DIFFERENT FIELDS

DECEMBER — 1969

STATION	Max. T	emp, at	1½ metre	** (°C)	Min.	l'emp. at	1½ motre	es (°C)	Min. Temp. at 5 cms. above (°C)				
	High	hest	Lowest		Hig	hest	Lov	vest	Dry	soil	Grass		
	Value	Date	Value	Date	Value	Date	Value	Date	Value	Date	Nalue	Date	
Mersa Matruh	25.6	2	16.8	25	13.1	3	4.5	6	2.0	8	_	_	
Tahrir	27.7	3	19.6	23	11.8	2	2.1	7	0.8	8	_		
Bahtim	27.0	2	18.9	15	11.2	4	1.4	29	1.0	9	_	_	
Kharga	31.5	11	19.8	23	13.8	11,13	1.6	25	0.0	28		-	

Table C 3.—(SOLAR+SKY) RADIATION, DURATION OF BRIGHT SUNSHINE, RELATIVE HUMIDITY, VAPOUR PRESSURE AT 1½ METRES ABOVE GROUND, EVAPORATION & RAINFALL

DECEMBER - 1969

	Radia- /cm³	Duration of Bright Sunshine (hour .)			Relative Humidity				Vapo	ur pr	essure	(mm8)		Evaporation (mms)		Rainfall (mms)			
STATION	(Solar+Sky) Radia tion gm. cal/cm ^s	Total Actual monthly	Total Possible monthly	%	Mean of day	1200 U.T.	Lowest	Date	Mean of day	1200 U.T.	Highest	Date	Lowest	Date	Piche	Pan lass A	Total Amou- nt Monthly	Max. fall in one day	Date
M. Matruh .	248.1	239.7	313.9	76	64	49	21	9	7.5	8.0	12.2	11	3.3	29	7.6	10.26	0.9	0.7	15
Tahrir	239.0	250.0	316.8	79	66	43	20	3	7.6	8.0	14.9	11	3 3	30	5.1	4.04	Tr.	Tr.	30
Bahtim	250.3	239.9	317.4	75	62	39	13	8	7.0	7.2	12.8	12	3.0	9	5.0	3.83	Tr.	Tr.	23
Kharga	307.4	2 97.4	329 2	90	40	27	8	9	5.2	5.7	10.4	11	2.0	9	9.2	6.60	0.0	-	-

Table C. 4.—EXTREME SOIL TEMPERATURE AT DIFFERENT DEPTHS (ems)
IN DIFFERENT -FIELDS

DECEMBER 1969

STATION	Highest (H)	E	Extreme soil temperature (°C) in dry field at different depths (ems.)										nperat				ass field						
		2	5	10	20	50	100	200	300	2	5	10	20	50	100	200	800						
Mersa Matruch	H	\$5,1 6,1	22.7 7.7		19.0 12.2	19.5 15.4		23.4	-	_			_	_	_	_	-						
Tahrir	H L	30.2 6.9		2 2.8 1 0.0		21.2 16.4	23 .0 18.9	24.6 21.8	25.4 23.7	_	_	_		_	_	-	_						
Bahtim	H L	32.1 6.2		22.3 13.0			25.1 22.0	26.5 24.6	26.3 25.7	_		=	_	-			_						
Kharga	H L	35.5 4.4	30.4		23.8 16.5	25.8 20.8	28.0 24.6	29.6 27.9	30.1 29.2	_	_	_	_	_	_	_							

Table C 5 .- SURFACE WIND

DECEMBER 1969

STATION		Speed n			Max. Gus)t- at 10 metres							
	Mean of the day	Night time mean	Day time mean	≥10 knots	≥15 knots	≥20 knots	≥25 knots	≥ 30 knots	≥35 knots	≥40 knots	value	Date
Marsa Matrouh	4.5	4.0	5.0	20	25	17	12	4	0	0	36	25
Tahrir	2.1	1.5	2.7	21	i 14	8	4	1	. 0	0	39	3 0
Bahtim	2.0	1.4	2.7		: 		-		-	_	·	_
Kharga	2.3	1,6	3.0	23	8	2	i 0	0	0	0	26	5,13

PRINTED IN ARAB REPUBLIC OF EGYPT BY THE GENERAL ORGANIZATION FOR GOVT. PRINTING OFFICES. CAIRO

First Under-Secretary of State

ALY SULTAN ALY

Chairman of the Board of Directors

906-1971-150